«Проверять» таким образом теорию отбора могли только геноцентрически мыслящие неодарвинисты, которые стремились доказать не саму по себе эффективность отбора как источника направленных изменений, а именно то, что отбор направляет изменения на основе ненаправленных наследственных изменений независимо от активной борьбы за существование самих организмов.
Понятно, что такой дарвинизм шел вразрез с дарвиновским дарвинизмом, который предполагал роль ненаправленной наследственной изменчивости лишь как предпосылку активной борьбы за существование, являющейся главным объектом действия отбора. Экспериментом, доказывающим эффективность действия отбора, является вся природа, как живая, так и неживая. Нужны ли лабораторные эксперименты для того, чтобы доказать, что более активные, жизнеспособные, обладающие более полезными для данной среды приспособлениями организмы имеют больше шансов на существование и оставление потомства?
Ясно, что таких доказательств могут требовать лишь самые радикальные антидарвинисты, упорно пытающиеся опровергнуть очевидное – способность отбора вызывать направленные изменения. Именно поэтому Дарвину даже не приходило в голову предлагать какие-то эксперименты для подтверждения теории отбора. Действительной проблемой, с самого начала вставшей перед дарвинизмом и вызвавшей нарекания оппонентов, являлась способность отбора не просто направлять изменчивость организмов в рамках того или иного вида, а обеспечивать происхождение видов, преобразование одних видов в другие.
Неодарвинистские же эксперименты по доказательству действенности отбора как направляющего фактора изменчивости видов имели своей целью доказать не правоту теории отбора, а правоту ее геноцентрического искажения. По своей бессмысленности они ничуть не отличались от вейсмановских экспериментов по отрезанию хвостов мышам и содержали логическую ошибку, известную как круг в доказательстве. Этот круг заключается в том, что экспериментаторы заранее знали, что обладающие защитной окраской особи лучше защищены от хищников, а затем демонстрировали это в никому не нужных экспериментах с целью подавления оппонентов, а не поиска истины.
В этом отношении эксперименты неодарвинистов не только не превосходили неоламаркистские эксперименты по используемой методологии, но и вообще вряд ли могут быть названы действительно экспериментами. Можно ли назвать экспериментами прикрепление разноцветных бабочек к определенному фону и подсчет тех, кого не склевали птицы? И вот этим доказывалась роль отбора!
«Тем не менее, – рассуждает далее Л. Бляхер, – ламаркисты неоднократно делали попытки доказать, что явления защитной окраски возникли под непосредственным влиянием цвета фона и что защитный признак, появившийся в течение индивидуальной жизни, делается наследственным. Соответствующие опыты ставились в начале 20-х годов XX столетия Б. Дюркеном и Л. Брехер на куколках бабочки-капустницы, А.П. Владимирским на капустной моли и другими авторами. Одним из них удавалось, а другим не удавалось показать изменение окраски насекомых после пребывания их на цветном фоне или под цветными светофильтрами и наследование этих изменений» (Там же, с. 184–185).
Способность ряда видов животных изменять окраску покровов применительно к фону природного окружения является установленным фактом натуралистической биологии. Особенно быстро это происходит у хамелеонов, некоторых рыб, амфибий и других видов. Более медленно или только один раз в жизни в раннем онтогенезе это происходит у некоторых видов бабочек. Понятно, что такой «хамелеонизм», совершается ли он быстро или медленно, не означает наследования приобретенных признаков.
Он осуществляется в рамках генетически закрепленных норм реакции. Каммерер работал с медленным «хамелеонизмом» у изучаемых им амфибий и попытался проследить возможность передачи приобретенных окрасок из поколения в поколение. Он отлавливал пятнистых саламандр и помещал одних на желтую влажную глину, других – на черную сухую землю.
Можно только поразиться терпению этого экспериментатора. После 3–4 лет пребывания на желтой влажной глине у саламандр наблюдалось заметное увеличение размеров желтых пятен, также пятна сливались друг с другом и появлялись новые. Такое же по продолжительности пребывание на черном фоне приводило к слиянию черных пятен и появлению новых черных пятен.
Личинки тех или других развивались на нейтральном фоне, а после метаморфоза потомство пожелтевших родителей переводилось с нейтрального снова не желтый фон, а почерневших – на черный. Потомки пожелтевших на желтом фоне становились еще более желтыми, причем желтые пятна у них сливались в две продольные полосы, т. е. происходило некое подобие перехода от пятнистой саламандры к другому, хотя и близкому виду – саламандре полосатой. Факт этот сам по себе весьма любопытен и заслуживает самого пристального внимания.
Потомки почерневших саламандр на черном фоне становились еще более черными. Однако когда потомков пожелтевших родителей перевели на черный фон, количество желтых пятен и симметричность их расположения уменьшилась. Тем не менее Каммерер считал, что продолжающееся изменение окраски саламандр в определенном направлении свидетельствует о наследовании приобретенных признаков.
Возражая ему, Поль Гийено совершенно справедливо замечал, что обнаруженная Каммерером зависимость окраски от фона свидетельствует именно о том, что изменения окраски были ненаследственными. Кроме того, даже сами эти изменения Гийено подвергал сомнению, поскольку в природе в одних и тех же условиях грунта встречаются очень черные, очень желтые и промежуточные по окраске саламандры (Там же, с. 186).
Данные Каммерера были частично проверены немецкими экспериментаторами, хотя, конечно, никто их них не смог ждать 3–4 года, пока будет изменяться окраска саламандр. С. Сечеров фактически подтвердил данные Каммерера, обнаружив, что личинки саламандр, развивавшиеся на желтом фоне, после метаморфоза превращаются в более желтых животных, чем их родители, а развившиеся на черном фоне становятся более темными. Аналогичные превращения наблюдал К. Фриш. В отличие от них, К. Хербст обнаружил, что окраска личинок изменяется соответственно цвету фона, но после метаморфоза окраска саламандр уже не соответствует фону и не приобретает этого соответствия при дальнейшем содержании на этом фоне (Там же, с. 186–187).
Продолжая свой длительный и сложный опыт, Каммерер скрещивал пятнистую саламандру с настоящей полосатой и убедился, что окраска полосатой в таких случаях рецессивна, т. е. потомки остаются пятнистыми. Затем он скрещивал обычную пятнистую саламандру с пятнистой, ставшей похожей на полосатую в результате воспитания на желтом фоне.
По описанию Каммерера, в двух первых поколениях рисунок имел промежуточный характер, а в последующих приближался к обычной пятнистой. Отсюда Каммерер сделал вывод о передаче в ряду поколений приобретенных форм окраски. Критики оспорили этот вывод, указав на то, что он основывается на субъективном зрительном восприятии автора эксперимента (Там же, с. 187).
В 1911 г., когда Каммерер только начинал свои эксперименты, английские экспериментаторы из Гарвардского университета Кастл и Филипс провели серию опытов на морских свинках. Это не было уже примитивное отрубание хвостов, как у Вейсмана, а довольно сложная хирургическая операция, посредством которой у белой морской свинки-альбиноса были удалены яичники и пересажены яичники черной морской свинки. Когда новые яичники прижились, белую самку скрестили с белым же самцом, и от этого «брака» стали рождаться черные морские свинки.
Аналогичный результат наблюдался и при скрещивании того же самца с неоперированной черной самкой. Отсюда был сделан вывод, что вся совокупность клеток тела белой самки оказалась бессильной обеспечить сохранение белого окраса перед генеративной структурой черных яичников, которые навязали, оказавшись на месте белых, доминантный черный окрас всему потомству белой самки от белого самца.
Этот весьма сомнительный эксперимент был принят научным миром как совершенно надежное доказательство абсолютной независимости наследственных признаков от изменчивости неполовой части организма. Данный эксперимент никто не проверял, его просто приняли на веру. Каммерер решил провести аналогичный опыт на саламандрах и доказать несостоятельность результатов, полученных английскими коллегами.
Он пересаживал яичник от самки обычной пятнистой саламандры к самке, воспитанной на желтом фоне и ставшей по окраске полосатой. Затем он скрестил последнюю с самцом обычной пятнистой саламандры. В первом скрещивании было получено 19 потомков с неправильным положением пятен, как у обычной пятнистой саламандры, и 45 – с рисунком, уклоняющимся в сторону приобретения полос. Во втором скрещивании на свет появились также 19 пятнистых и 54 похожих на полосатых саламандр.
Отсюда Каммерер сделал заключение, что соматические структуры измененной под воздействием среды и ставшей полосатой по окраске саламандры подействовали на зародышевую плазму обычной пятнистой, что и привело к выстраиванию у значительного большинства потомства пятен в линии. Это означало, по его мнению, опровержение итогов опыта Кастла и Филипса. Кроме того, Каммерер полагал, что этим экспериментом ему удалось доказать новую идею, выдвижение которой он считал своей заслугой. Эта идея заключалась в том, что соматические структуры вновь образованных под действием среды генеалогических линий значительно активнее действуют на наследственные структуры «зародышевой плазмы», чем соматические структуры давно образовавшихся и устоявшихся в своих наследственных признаках линий. Эта идея, основанная на длительном опыте проведения экспериментов, вполне заслуживает внимания.
Критики, разумеется, подвергли сомнению результаты и этих экспериментов. «Отсюда вытекает вопрос, – объясняет суть этих сомнений Л. Бляхер, – имело ли место приживление пересаженных яичников, или же потомки в этом случае развивались из яиц регенерирующих яичников реципиента. Каммерер предвидел этот вопрос и для ответа на него кастрировал одну самку саламандры и ничего ей не пересадил; в результате самка считалась бесплодной. Разумеется, один такой проверочный опыт не может свидетельствовать против возможности регенерации удаленных яичников» (Там же, с. 188).