Плавники рыб уже являются конечностями, предназначенными для передвижения тел в водной среде. некоторые рыбы используют их для переползания по дну. Рыбы, поселившиеся на границах моря и суши, а также в мелководных водоемах, стали постоянно и массово использовать плавники для переползания по другой опоре – не по водной среде, а по поверхности земли. Оставалось только осуществить техническую доводку по-иному работающих конечностей – преобразовать мускулистые плавники в лапы, которые у земноводных остаются по бокам туловища, выдавая свое происхождение от плавников.
Эта доводка осуществлялась под давлением биологической работы многих поколений и отбора генотипов, предрасположенных к образованию типов конечностей, наиболее удобных для выполнения именно этой биологической работы. Это давление оказывало влияние и на генетическую регуляцию хода онтогенеза, что в свою очередь предрасполагало к заданию направленности ненаправленным наследственным изменениям и направленному преобразованию всей генетической системы организмов.
Мутагенез в этом смысле мог играть только второстепенную роль: случайные ошибки генетического аппарата могли интегрироваться в общий ход наследственных изменений, если они находились в русле этого хода, соответствовали его общей направленности. В противном случае они создавали помехи для биологической работы в новой среде и оперативно элиминировались отбором.
Точно так же конечности наземных животных уже готовы к гребущим движениям при передвижении в воде. Но для превращения конечностей пресмыкающихся и млекопитающих, переселившихся в океан, в ласты ихтиозавров, китообразных и сирен, потребовалась биологическая работа огромного числа поколений, во взаимодействии с отбором оказывавшая давление на работу генетических структур и направлявшая ход ненаправленных наследственных изменений.
Сложнее обстояло дело с выработкой готовых к полету крыльев – органов передвижения в воздушном пространстве. У разных групп организмов крылья имеют различное происхождение. У насекомых они развились из разросшихся придатков грудного отдела, а у позвоночных (ящериц, птиц, летучих мышей и т. д.) – путем видоизменения передних конечностей. Ни придатки грудного отдела насекомых, ни передние конечности различных типов позвоночных не готовы непосредственно к обеспечению передвижения с опорой на воздушную среду, не преадаптированы к полету.
Зато они вполне готовы к маховым движениям для помощи задним конечностям при обеспечении большей дальности прыжков или перебросок с одних высоко расположенных природных объектов на другие (со скалы на скалу, с дерева на дерево, с одной ветки на другую и т. д.). Потребовалась опять же биологическая работа очень большого числа поколений, прежде чем маховая активность органов, обеспечивавшая эффективность прыжковых движений, стала обеспечивать и перелеты, то есть перемещения в пространстве с опорой не на плотную (водную, наземную), а на разреженную воздушную среду.
В этой работе участвовал весь организм первых ящеров, насекомых, птиц, млекопитающих, начинавших передвигаться с опорой на воздушную среду, что повлекло за собой направленность скоординированных изменений их морфологии и физиологии, поддержанных и отшлифованных отбором, и закрепленных наследственно.
Не ошибочность действия генетических структур, а направленное воздействие биологической работы организмов на свои рабочие органы – генетические структуры, поддержанное, отточенное и упроченное отбором, привело к наследственному закреплению полезных изменений и преимуществ, связанных с превращением тел этих животных в физиологически и морфологически сконструированные летательные аппараты.
При этом и упорный градуализм синтетической теории эволюции, абсолютизирующий один из второстепенных моментов дарвиновского учения, так же не выдерживает проверки временем, как и авантюрный мутационистский сальтационизм. На каждом этапе биологической работы градуалистическое накопление предпосылок и количественных изменений строения должно было приводить к скачкообразным качественным изменениям, обеспечивающим необходимые преадаптации к дальнейшим эволюционным изменениям.
Поэтому нет необходимости полагать, что постепенность и последовательность эволюционных изменений должна была порождать переходные звенья, например, между прыгающими и летающими особями, которых мы якобы просто не можем обнаружить вследствие неполноты палеонтологической летописи. В этом представлении, безусловно, сказывается и ограниченность классического дарвинизма, связанная с недостаточной разработкой категории биологической работы. Под действием биологической работы, непосредственно связанной с отбором, не могли не происходить скачкообразные изменения хода онтогенеза, которые производили переходные формы не сплошным потоком, а в виде последовательных, но существенно переработанных образований.
На каждом этапе эволюционных преобразований формируются свои преадаптации, которые облегчают и обусловливают скачкообразные переходы к образованию новых форм. Современный градуализм должен выявить последовательную смену преадаптированных скачков, а не проводить прямую непрерывную евклидову линию от прошлого к будущему.
30.2 Проблема видообразовательных новаций
Оригинальную концепцию видообразовательных новаций, имеющую ряд несомненных достоинств, предложил в 2007 году российский исследователь из Петербурга А.Болдачев. (Болдачев А.В. Новации. Суждения в русле эволюционной парадигмы – СПб.: Изд-во С.-Петерб. ун-та, 2007 – 256с.). Изложение своей концепции он начинает с основательной критики мутационизма как теоретической основы и синтетической теории эволюции, и ее конкурентов из лагеря сальтационистов и пунктуалистов.
А. Болдачев напоминает, что понятие мутации вошло в научный обиход и стало выдвигаться в качестве одного из главных элементов теоретических представлений об эволюции, когда практически все исследователи не сомневались в однозначном соответствии между генами и признаками организма. «На момент формирования синтетической теории эволюции, – отмечает он, – исходили из принципа «один ген – один признак», из которого логично следовало, что какое-либо изменение признака или появление нового признака однозначно связано с конкретной модификацией генома – изменением существующего гена или появлением нового. Использование термина «мутация» и сейчас носит отпечаток давно устаревшей концепции» (Там же, с. 120).
Действительно, выдвижение мутаций в качестве основы эволюционно значимой изменчивости произошло с первыми успехами генетики и до сих пор инновационная роль мутаций в эволюции не вызывает сомнений у огромного большинства специалистов в сфере эволюционной биологии. Споры ведутся главным образом по поводу того, мелкие или крупные мутации приводят к преобразованию видов.
Любое положение, выдвигаемое в эволюционной биологии, сразу же подвергается разносторонней критике и обсуждению с самых различных позиций. Но подвергнуть критическому рассмотрению способность мутагенеза быть источником нового в процессах видообразования никто всерьез даже и не пытался.
В самом деле, каковы основания для признания мутаций первоисточником изменений, ведущих к видообразованию, для отождествления мутационной и видообразующей изменчивости? Действительно, мутации вызывают разнообразные изменения фенотипов, эти изменения могут наследоваться в значительном числе поколений. Они могут накапливаться в непроявленном, гетерозиготном состоянии, распространяться в генофонде популяций.
Однако мутации случайны, связаны не с борьбой за существование организмов, а с ошибками и повреждениями генетического аппарата, имеют неприспособительный характер, создают проблемы для выживания и самовоспроизведения организмов и т. д. Как выражается А. Болдачев, «трудно себе представить, что отработанный за миллиарды лет процесс адаптации биологических организмов основан на случайных ошибках генного механизма» (Там же, с. 122).
Мутации – скорее патологическое, чем видообразующее, эволюционно перспективное явление. «Учет случайных мутаций, – считает Болдачев, – имеет существенное значение лишь при специальном изучении передающихся по наследству генетических заболеваний и других патологий, связанных с ошибками в генном механизме. Также велика значимость изучения мутаций для лабораторных исследований нормального генетического механизма. Целенаправленное внесение ошибок в геном – один из основных методов в генетических исследованиях. Однако понятно, что столь частое фигурирование понятия «мутация» в литературе по молекулярной биологии отнюдь не подтверждает исключительную значимость этого феномена в нормальных (природных) генетических и биологических механизмах» (Там же, с. 122–123).
Автор работы вполне резонно замечает, что видообразовательная роль мутаций не подтверждается и при проведении искусственного отбора. Во-первых, при искусственном отборе селекционеры в большинстве случаев не нуждаются в мутациях, а проводят отбор по нормальным, полезным для человека признакам, реализуя тем самым один из допустимых внутри вида в рамках нормы реакции путей онтогенеза.
Во-вторых, использование мутаций при отборе в лабораторных экспериментах никогда не приводило к образованию новых видов и не порождало репродуктивной несовместимости селекционированных линий с другими особями того же вида.
В-третьих, эффективность использования индуцированных облучением и химическими мутагенами мутаций для ускорения селекции неверно объяснять появлением мутаций, напрямую приводящих к морфологическим изменениям. На самом деле происходит общая дестабилизация генетического аппарата, позволяющая расширить спектр допустимых путей онтогенеза особей и отобрать из них наиболее перспективные с точки зрения селекционеров вариации. При этом такая дестабилизация не нарушает видовую определенность генома. Ведь если бы такое нарушение произошло, никакой онтогенез был бы невозможен (Там же, с. 123).
Основываясь на исследованиях геномов в начале XXI века. Автор делает вполне логичные выводы о несостоятельности не только мутационизма, но и всей совокупности подходов, при которых «биологические организмы в описываемом теорией механизме эволюции играют лишь роль внешних воплощений, оболочек генома, тестеров, необходимых исключительно для реализации отсева его неудачных вариаций и закрепления удачных» (Там же, с. 125).