Но многие и многие учёные продолжали считать соотношение неопределённостей результатом неточности и субъективности наших знаний об объектах микромира самих по себе. Они не оставляли попыток восстановить макроскопические представления о микроскопических объектах. Одну из последних таких попыток предпринял известный американский физик Д. Бом, стремясь обнаружить у микропроцессов скрытые макроскопические параметры. Но природа неизменно разбивала розовую геоцентрическую мечту о скрытых макроскопических свойствах глубин материи, открывая исследователям, напротив, всё новые немакроскопические, всё более удивительные свойства и отношения. В XX веке сама природа сделалась для её исследователей независимо от их воли и желания пробным камнем негеоцентрического мировоззрения.
Глава 5. Негеоцентрический космизм
5.1. Эволюция космологии и эталонная модель Вселенной
История развития представлений об устройстве мироздания показывает, что это развитие проходит три основных этапа, соответствующие трём последовательно сменявшим друг друга на сцене человеческого познания научных картин мира. Первая из этих картин была всецело геоцентрической. Она принимала Землю за абсолютный центр мироздания, Солнце и планеты полагались вращающимися вокруг неё по идеально шарообразным сферам. В древней картине мира имело хождение чисто геоцентрическое понятие абсолютного верха и низа, вещественное наполнение мира сводилось к сочетанию четырёх элементов, или стихий, находимых на Земле, – земли, воды, воздуха и огня. При этом крупнейший философ-энциклопедист древности Аристотель считал характерной особенностью двух первых из них, – земли и воды, – стремление книзу, двух других, – воздуха и огня, – стремление кверху. Аристотель же создал первую в мире систематическую всеобъемлющую космологию. Она зиждилась на идее концентрического обтекания светящимися телами, жёстко закреплёнными на своих орбитах, небесной сферы.
Все несообразности и несовпадения наблюдательных данных с такой картиной скомпенсировал последователь Аристотеля, крупнейший астроном древности Клавдий Птолемей. Он объяснял отклонения в положении «светил» от положенных им по аристотелевской схеме мест так называемыми эпициклами. Если светило не оказывалось на положенном ему по Аристотелю месте, значит, оно по каким-то причинам, выяснить которые не представлялось возможным, «вильнуло» в сторону, «крутанулось» по проложенной рядом, неведомо откуда взявшейся дополнительной орбите. Система Птолемея была системой упорядочения гелиоцентрической видимости. Она вгоняла факты в прокрустово ложе описательных характеристик, получаемых земным наблюдателем, а объяснения явлений ограничивала схематизированным описанием перемещений тел соответственно их положениям, обнаруживаемым этим наблюдателем. Все неправильности, вытекавшие из геоцентрической схемы строения космоса, объяснялись комбинациями равномерных круговых движений. «Так оно движется», – вот и всё объяснение, на какое была способна делающая свои первые шаги конкретная наука. Когда действительность не укладывалась в схему, оставалось призывать на помощь либо умозрительное представление о хаосе, либо влияние всеблагих богов.
Вторая по счету научная картина мира, созданная людьми, механистическая картина мира Нового времени, была упорядочением уже не геоцентрической видимости, а внеземной действительности, упорядочением опять-таки геоцентрическим и антропоморфным. Мир не ограничивался теперь уже видимостью абсолютного центра движения объектов, образуемого земным положением человека-наблюдателя, но он ограничивался видимыми объектами, движущимися по аналогии с земными объектами и являющимися бесконечными повторениями гелиоцентрической системы.
Третья научная картина мира, возникшая в XX веке, квантово-релятивистская картина мира новейшего времени в истории человечества, разрушила и эту иллюзию. Она продемонстрировала негеоцентрическое строение мира, разнокачественность и разноуровненность различных процессов, чрезвычайно сложный и нетривиальный характер эволюционного единства мира.
Изучением Вселенной как некоторого вне нас существующего объекта в его проявлениях и пока еще непроявленных свойствах занимается особая наука – космология. Само название этой науки свидетельствует о том, что она стремится создать единое, максимально полное и эмпирически обоснованное учение о космосе, системе и устройстве мироздания.
Как уже отмечаюсь, слово «космос» древнегреческого происхождения, в языке Эллады оно означало не просто «мир как таковой», а определённый, выделяемый человеком порядок, строй, структуру (например, у Гомера – построение войска). Причём эта структурированность, определённость, упорядоченность рисовалась именно как противоположность абсолютно неупорядоченному, незакономерному, причинно необусловленному изменению – хаосу.
С самого своего зарождения в ткани древней культуры космология дополнялась учением о возникновении объектов космоса, происхождении и развитии самого наблюдаемого нами космоса – космогонией.
Возникнув в древности нa базе религиозно-мифологического мировоззрения, космология и космогония сводились к наивно-фантастическому, антропоморфному объяснению окружающего человека мира, и этот последний с его воздействующими на чувства человека реалиями рисовался людьми всецело земноподобным, геоцентричным. У всех без исключения древних и средневековых народов в основе космологии и космогонии лежит креационизм – учение о сотворении мира волей и деятельностью богов, антропоморфных существ, наделённых нечеловеческой силой и запредельным для человека знанием. Отрываясь от религиозно-мистической пуповины, космология и космогония стали натурфилософскими учениями, учитывающими данные конкретной науки, но строящимися в cвоих основах на умозрительном теоретизировании. А самое безудержное умозрение, как только оно отрывается от фактов, базируется опять-таки на земном наблюдательном и историческом опыте, заземляется на геоцентрические и антропоцентрические представления, выводимые из этого опыта. Это не умаляет, разумеется, достоинств конкретно-научной направленности космологии и космогонии Нового времени. Как уже говорилось, основной космологической моделью Нового времени была бесконечная в плоском евклидовом пространстве и вечная в абсолютном ньютоновском времени Вселенная, несотворимая и неразрушимая, наполненная безграничным множеством солнцеподобных звёзд со своими системами земноподобных планет. Всё в ней, от мельчайшего атома до крупнейшей звёздной системы считалось движущимся по законам классической механики, выведенным из земных экспериментов и наблюдений. Космогония этого периода по отношению к окружающему нас космосу как целому была, в сущности, антикосмогонией: она признавала космос вечно существующим, несотворимым и неуничтожимым.
Конечно, такое представление о Вселенной как мире в целом было важным достижением всё ещё наивного эволюционизма, отождествлявшего являющийся нам непосредственно геоцентрический «срез» космоса со всей материей Вселенной. Такой качественно однородный мир представлял собой дурную бесконечность, навязанную природе ограниченностью знания. В то же время ряд космогонических идей того времени, в особенности космогоническая теория Канта-Лапласа о происхождении Земли и других планет из сгустившихся газовых облаков, вводила в космогонию историческое видение, означала важную победу конкретно-научного космогонического исследования Вселенной. Сама Земля с этой точки зрения оказывалась возникшей из неземноподобной раскалённой газовой туманности. Недаром теория Канта-Лапласа coхранила свою жизнеспособность до сегодняшнего дня, в то время как сотни более респектабельных теоретических представлений за это время сделались всего лишь историческими реликвиями, вчерашним или даже позавчерашним днём науки.
К концу XIX века достраивается по всем направлением грандиозное здание классической науки, одним из стержневых элементов которого является устоявшаяся и общепринятая космологическая модель. Бесконечная и однородная в пространстве и времени, стационарная, т. е. устойчивая и постоянная, лишённая глобальных и всеохватных изменений, эта модель располагала космос в бескрайнем, но повсюду одинаковом плоском евклидовом пространстве и равномерно текущем, безотносительном к характеру протекания физических процессов, абсолютно одинаковом и равном себе, всеохватном ньютоновском времени. Вселенная в этой модели по своим пространственно-временным и прочим физическим характеристикам представлялась некоей копией с земного мира, что и неудивительно, поскольку наука того времени была ещё бессильна отобразить космические процессы иначе, нежели в их сугубо земных, непротиворечиво макроскопических проявлениях.
Но уже в конце века теоретиками был подмечен ряд несообразностей, ставивших под сомнение, по крайней мере, логическую непротиворечивость классической модели. Эти затруднения, проявившиеся как парадоксы бесконечного и конечного, были связаны с тем, что тривиально бесконечный космос, составленный по принципам этой модели, выглядел бы для земного наблюдателя и воздействовал бы на Землю совершенно иначе, чем тот, который мы имеем в действительности. Первая из этих трудностей, получившая название фотометрического парадокса, базировалась на следующем рассуждении. При равномерном расположении бесконечного числа звёзд светящаяся материя должна была бы заполнять всю небесную сферу, и в этом случае всё небо светилось бы так ярко, что даже Солнце выглядело бы на этом фоне чёрным пятном. Отсюда следовало, что либо число звёзд не бесконечно, т. е. сама Вселенная не бесконечна и где-то странным образом обрывается, либо – а в это особенно не хотелось верить, – классическая модель не отражает действительности, и Вселенная устроена как-то иначе.
В 1896 году немецкий астроном Зеелигер сформулировал второй парадокс, названный его именем, но известный также под названием «гравитационного парадокса». Согласно Зеелигеру, бесконечное количество звёзд и туманностей должно создавать бесконечно сильные гравитационные потенциалы и бесконечную энергию взаимодействия между любым макроскопическим телом и всей Вселенной.