Выяснилось, что у макак-резусов пропорции неокортекса сдвинуты по сравнению с людьми в том же направлении, что и у человеческих детей по сравнению со взрослыми (Hill et al., 2010). Иными словами, те отделы, которые у взрослых людей относительно крупнее, чем у новорожденных, в ходе эволюции тоже росли с опережением.
Таким образом, все три “измерения” изменчивости по размеру мозга (возрастное: дети по сравнению со взрослыми; эволюционное: макаки по сравнению с людьми; индивидуальное: взрослые люди с маленьким мозгом по сравнению со взрослыми людьми с большим мозгом) сопряжены с похожими изменениями пропорций коры. В частности, во всех трех случаях по мере увеличения мозга растут относительные размеры передней поясной коры, угловой извилины, верхней теменной дольки и латеральной височной коры.
Отличаются ли “опережающие” участки коры от “отстающих” по своей структуре и функциям? Чтобы это выяснить, исследователи сопоставили данные по масштабированию с современной классификацией нейронных сетей коры (Yeo et al., 2011). Оказалось, что “опережающие” участки приурочены в основном к ассоциативным нейронным сетям, которые занимают самый верхний уровень в функциональной иерархии нейронных сетей. Ассоциативные сети собирают и интегрируют данные, поступающие с нижележащих уровней. Они обобщают и связывают в единую картину разнообразные сигналы, приходящие из многих других, в том числе удаленных, участков коры. Что касается “отстающих” участков, то они преимущественно связаны с сетями, взаимодействующими с лимбической системой и отвечающими за обмен данными между неокортексом и эволюционно древними подкорковыми отделами.
Этот вывод подтвердился при сопоставлении данных по масштабированию с особенностями клеточного строения разных участков коры, а также с данными по экспрессии генов. По сравнению с другими отделами, в “опережающих” участках повышена экспрессия генов, связанных с энергетическим метаболизмом, транспортом ионов калия и работой синапсов. Судя по всему, для “опережающих” отделов характерно высокое энергопотребление и максимально разветвленная сеть дендритов с повышенным числом дендритных шипиков и синапсов, служащих для приема сигналов от других нейронов неокортекса[34].
Все это говорит о том, что в большом мозге по сравнению с маленьким непропорционально увеличены отделы коры, связанные с высшими – интегрирующими и обобщающими – уровнями обработки информации. Самое удивительное, что при этом даже не важно, сравниваем ли мы мозговитого взрослого человека с ребенком, обезьяной или взрослым обладателем более компактного мозга. Во всех трех случаях наблюдается одна и та же тенденция.
Причины и следствия обнаруженной закономерности еще предстоит выяснить. Пока можно лишь отвлеченно порассуждать о том, что непропорциональное разрастание ассоциативных зон может быть связано либо просто с поддержанием нормальной работы увеличивающегося мозга, либо с увеличением эффективности его работы (желательно без уточнения, что такое эффективность). Чтобы в этом разобраться, нужно использовать разнообразные тесты мозговых функций (одним IQ тут явно не обойтись), причем результаты нужно сопоставлять по отдельности с размером коры и с пропорциями ее частей.
Результаты исследования можно при желании сформулировать так, что они будут выглядеть практически сенсацией. Например: “Люди с маленьким мозгом занимают промежуточное положение между людьми с большим мозгом и обезьянами”. Или: “У людей с маленьким мозгом недоразвиты отделы коры, отвечающие за высшие психические функции”. Формально говоря, авторы именно это и обнаружили. Но в действительности, скорее всего, ситуация не так драматична. Выявленным закономерностям можно найти простое и “политкорректное” объяснение. Исследователи отмечают, ссылаясь на теорию алгоритмов, что вычислительная нагрузка интегрирующего алгоритма по мере увеличения объема входных данных может расти не линейно, а с ускорением. Поэтому не исключено, что причина опережающего роста ассоциативных зон – чисто техническая: если вы увеличиваете кору вдвое, то ассоциативные зоны нужно увеличить, скажем, втрое, иначе эта кора у вас просто не будет нормально работать. Иными словами, небольшое усиление рабочих узлов коры требует резкого расширения зон технического обслуживания.
С другой стороны, в эволюции сплошь и рядом бывает так, что орган, изначально развившийся для чего-то одного, открывает новые неожиданные возможности и со временем начинает использоваться для чего-то другого. Кто знает, может быть, ускоренное разрастание ассоциативных зон изначально было лишь неизбежным побочным эффектом общего увеличения неокортекса, но потом эти зоны стали приобретать новые функции, что постепенно создало предпосылки для перехода наших когнитивных способностей на качественно новый уровень?
Размер, пропорции частей… что-нибудь еще?
Хотя люди явно отличаются от других приматов по поведению и когнитивным способностям, вопрос о том, какими свойствами мозга обусловлены эти отличия, далек от разрешения. Понятно, что наш мозг крупнее, чем у других обезьян (рис. 9.6), и у нас больше нейронов в неокортексе. Но этого, пожалуй, недостаточно для объяснения уникальных черт нашего разума. Положительные корреляции, прослеживающиеся между размером мозга, числом нейронов и когнитивными способностями как у приматов, так и у других млекопитающих, не настолько просты и однозначны, чтобы сводить уникальность нашего мышления исключительно к массе мозга или количеству нейронов в коре.
Рис. 9.6. Мозг человека резко отличается от мозга других обезьян по размеру, но не по анатомии. По рисунку из Sousa et al., 2017a.
Как писал Гилберт Честертон, легко найти изображение оленя, сделанное человеком. Но вот изображения человека, сделанного оленем, не найти. “…Это – потрясающая тайна”[35]. Что же такого уникального в мозге человека помимо размера, какие его особенности позволяют нам делать вещи, абсолютно недоступные другим животным?
Уже более полутора веков – начиная с выхода в свет дарвиновского “Происхождения видов” – ученые пытаются найти в мозге человека хоть какие-то уникальные черты, кроме размера. Поначалу этому вопросу придавали преувеличенное значение, так что дебаты протекали весьма бурно. Противники Дарвина думали, что наличие в мозге человека анатомических деталей, отсутствующих у обезьян, доказало бы независимое сотворение видов и несостоятельность дарвиновской теории. Ричард Оуэн, блестящий анатом (придумавший, кстати, термин “динозавры”) и при этом один из самых авторитетных антидарвинистов, утверждал, что такой уникальной деталью является “малый гиппокамп” (hippocampus minor). Теперь эта часть мозга известна как “птичья шпора” (calcar avis) – выпуклость на медиальной стенке заднего рога бокового желудочка. Но дарвинистам удалось показать, что и малый гиппокамп, и другие найденные Оуэном структуры мозга, якобы уникальные для человека, у обезьян тоже имеются. Этот громкий диспут способствовал росту популярности дарвиновской теории, хотя сегодня нам уже нелегко понять логику тогдашних ученых, полагавших, будто наличие или отсутствие пустяковой выпуклости на стенке мозгового желудочка может быть аргументом за или против эволюционного происхождения видов. У каждого вида есть какие-то уникальные черты, иначе его не считали бы отдельным видом. Впрочем, и сегодня еще можно встретить креационистов, придерживающихся очень старой идеи о том, что в мозговых желудочках находится душа (Schiller, 1997).
За прошедшие полтора века между мозгом человека и шимпанзе так и не удалось найти серьезных анатомических различий. Правда, нашлись более тонкие различия, затрагивающие структуру связей между отделами (например, между речевыми зонами коры), а также детали строения нейронов (например, пирамидальные нейроны коры у людей несколько крупнее и имеют более разветвленную систему дендритов с большим числом дендритных шипиков). Кроме того, было показано, что у человека и других приматов различаются уровни экспрессии некоторых генов в мозге (Sousa et al., 2017a).
В 2017 году журнал Science сообщил о результатах масштабного исследования транскриптомов 16 отделов мозга у взрослых людей, шимпанзе и макак-резусов, выполненного большим международным коллективом биологов (Sousa et al., 2017b). Ученые измерили уровни экспрессии белок-кодирующих генов и некодирующих РНК в 247 образцах мозговой ткани шести людей, пяти шимпанзе и пяти макак. Образцы были взяты из гиппокампа, миндалевидного тела, полосатого тела, медиодорсального ядра таламуса, коры мозжечка и 11 отделов неокортекса.
Оказалось, что уровни экспрессии множества генов в мозге у этих приматов значимо различаются. Результат ожидаемый – было бы странно, если бы у всех все было одинаково. Цифры такие: хотя бы в одном отделе мозга и хотя бы у одной пары видов по-разному экспрессируются 25,9 % матричных РНК (мРНК, кодируют белки) и 40,6 % микроРНК (регулируют экспрессию). У человека по сравнению с обоими видами обезьян значимо сдвинута (понижена или повышена) экспрессия 11,9 % мРНК и 13,6 % микроРНК. Специфичные для человека изменения экспрессии мРНК за редкими исключениями приурочены лишь к некоторым отделам мозга, в частности к полосатому телу, а не ко всем сразу. Напротив, среди дифференциально экспрессирующихся микроРНК много таких, чья экспрессия у человека повышена или понижена во всех или многих отделах сразу. При этом генов микроРНК с повышенной экспрессией у человека втрое больше, чем с пониженной (155 против 47).
Многие гены, экспрессия которых изменилась у людей по сравнению с шимпанзе и макаками, связаны с передачей сигналов при помощи нейромедиаторов ацетилхолина, серотонина и дофамина. Например, в полосатом теле у человека понижена экспрессия трех из пяти типов дофаминовых рецепторов (DRD1, DRD2, DRD3). Эти нейромедиаторы оказывают модулирующее влияние на нейроны мозга и играют важную роль в обучении, рассудочной деятельности и эмоциональной регуляции поведения (см. раздел “Нейрохимическая гипотеза происхождения человека” ниже). Напротив, профили экспрессии генов, связанных с главными “рабочими лошадками” мозга – возбуждающим медиатором глутаматом и тормозным медиатором ГАМК, оказались у трех видов сходными. Нуклеотидные последовательности этих генов тоже отличаются высокой консервативностью у приматов.