1988). Между прочим, данных по “тактическому обману” у разных видов приматов накоплено довольно много. Анализ этих данных еще в 2004 году показал, что частота случаев обмана у обезьян положительно коррелирует с объемом неокортекса (Byrne, Corp,2004).
Логично предположить, что увеличенный объем серого вещества в участках мозга, связанных с социальными отношениями, способствует более результативному социальному поведению. У макак хорошей мерой этой результативности является социальный статус, или ранг, занимаемый особью в группе. Показано, что у самцов макак социальный ранг зависит от способности к формированию коалиций, которая, в свою очередь, определяется умением поддерживать товарищеские отношения с другими самцами. Ученые оценили социальный ранг 11 подопытных самцов (9 из которых жили в группах из 4 или 5 обезьян) по количеству побед в конфронтациях с соплеменниками. Оказалось, что общественное положение этих самцов положительно коррелировало с объемом серого вещества в ростральной префронтальной коре и нижней височной извилине. Таким образом, предсказания теории социального интеллекта снова подтвердились.
Исследователи также обнаружили, что у обезьян из больших коллективов повышена корреляция между уровнями активности верхней височной борозды и передней части поясной извилины. Последний отдел у макак, как и у людей, отвечает за оценку социально значимой информации, получаемой от соплеменников. Повышенная согласованность также отмечена в работе верхней височной борозды и тех участков мозга, из которых в нее приходит зрительная информация. Таким образом, с ростом коллектива не только увеличивается объем некоторых участков мозга, но и растет степень скоординированности их работы.
Исследование показало, что увеличение объема социально ориентированных отделов мозга может быть не только причиной (или базисом) участия индивида в сложной сети общественных взаимоотношений, но и следствием такого участия. Эти отделы можно натренировать подобно мышцам, а конечным результатом такой тренировки может стать рост общественного статуса индивида.
Все подобные исследования основаны на понимании того, что мозг позвоночных в целом имеет мозаичную (модульную) структуру: он состоит из множества довольно-таки специализированных отделов, различающихся как анатомически, так и функционально. Если в ходе эволюции общий объем мозга увеличивается или уменьшается, то пропорции его частей имеют обыкновение меняться предсказуемым образом (см. раздел “Опережающее развитие ассоциативных сетей” в главе 9). Это свидетельствует о неких онтогенетических или функциональных ограничениях, не позволяющих отделам мозга совсем уж произвольно менять свои пропорции. Однако на этом фоне все же существует значительная межвидовая (а также межродовая, межсемейственная и так далее) изменчивость по относительным размерам отделов мозга (Barton, Harvey, 2000).
Предполагается, что эта изменчивость во многом связана с адаптацией к различным условиям существования. Например, если мы видим, что у первых млекопитающих по сравнению с их предками цинодонтами (группа зверозубых ящеров) резко увеличились отделы мозга, связанные с обонянием и осязанием, то логично предположить, что это было напрямую связано с переходом к ночному образу жизни[49]. Среди примеров такого рода – положительная корреляция между богатством песенного репертуара и относительным объемом вокального центра у певчих птиц (Devoogd et al., 1993) и увеличенный гиппокамп у пернатых, запасающих пищу впрок (Krebs, 1990). Также широко известно исследование, в котором изучались лондонские таксисты, вынужденные профессионально ориентироваться в одном из самых сложных для автомобилистов городов мира. Выяснилось, что у них заметно увеличена задняя часть гиппокампа по сравнению с людьми других профессий (Maguire et al., 2000), хотя в этом случае речь идет о пластических изменениях, то есть о результатах тренировки, а не эволюции.
В пределах отряда приматов изменчивость размера и пропорций мозга чрезвычайно высока – и столь же изменчивы экологические и социальные характеристики. Поэтому на приматах удобно смотреть, какие части мозга связаны с теми или иными экологическими и социальными адаптациями. В 2019 году американские приматологи сопоставили имеющиеся литературные данные по анатомии мозга приматов с несколькими социальными и экологическими факторами, а именно с диетой, ночным или дневным образом жизни и со сложностью социальной организации (DeCasien, Higham, 2019). Вид Homo sapiens был исключен из рассмотрения, поскольку он слишком резко отличается от остальных приматов как по строению мозга, так и по социоэкологическим особенностям.
В исследовании было учтено больше видов приматов и больше отделов мозга, чем в прежних публикациях на эту тему: 33 отдела мозга, для каждого из которых нашлись данные по 17–58 видам приматов. Учитывалось все, что удалось найти в литературе, так что информация для каждой комбинации “отдел мозга / вид” включала сведения по десяткам особей. Для внесения поправок на родство видов (чтобы минимизировать влияние так называемой филогенетической инерции[50]) использовались новейшие уточненные эволюционные деревья.
Качество диеты оценивалось двумя альтернативными способами. В первом случае использовалось простейшее бинарное деление: всеядные и плодоядные виды относили к группе с “высококалорийной диетой”, а питание листьями считалось “низкокалорийной диетой”. Второй подход основан на вычислении индекса качества питания, который для приматов традиционно рассчитывают по формуле 1s + 2r + 3,5a, где s – доля структурных частей растений, r – доля репродуктивных частей растений, a – доля животной пищи в рационе. Оба подхода дали практически одинаковые результаты.
Сложность социальной организации тоже оценивалась двумя альтернативными способами – либо по среднему размеру группы, либо путем разделения всех видов на три категории: одиночки, живущие парами и живущие группами. Это тоже, как выяснилось, мало влияет на результаты.
Получилось, что обонятельные отделы мозга относительно крупнее у полуобезьян (Strepsirrhines) по сравнению с обезьянами (Haplorrhines), у видов с высококалорийной диетой, у ночных видов и живущих большими группами (рис. 10.3). Любопытно, что у последних по сравнению с видами, живущими парами или поодиночке, увеличены только дополнительные обонятельные луковицы, связанные с вомероназальным органом и восприятием социально значимых химических сигналов (феромонов), но не основные обонятельные луковицы, отвечающие за обычное обоняние. Это косвенно свидетельствует о важной роли химической коммуникации у социальных приматов, живущих большими группами (но не у моногамных видов и одиночек).
Рис. 10.3. Относительные размеры отделов мозга у приматов в зависимости от подотряда (Haplorrhines или Strepsirrhines) и социоэкологических факторов. Отмечены отделы мозга, относительно более крупные у данной группы по сравнению с другой: связанные со зрением (OT – зрительный тракт, V1 – первичная зрительная кора, LG – латеральное коленчатое тело таламуса, MS – средний мозг), с обонянием (OB – обонятельные луковицы), со вкусовым восприятием (IN – островок) и с пространственным мышлением (HP – гиппокамп, PC – палеокортекс, SZ – так называемый шизокортекс, включающий энторинальную кору и ряд других областей, тесно связанных с гиппокампом). Отдельно показан неокортекс (NEO), относительный объем которого увеличен у обезьян (по сравнению с полуобезьянами) и у видов со сложной социальной жизнью и высококачественной диетой (всеядных и плодоядных). По рисунку из DeCasien, Higham, 2019.
Зрительные отделы относительно крупнее у обезьян по сравнению с полуобезьянами, у дневных и сумеречных видов по сравнению с ночными, а также у видов с высококалорийной диетой и у живущих большими группами. Последний факт косвенно свидетельствует о важной роли визуальных сигналов в социальной жизни приматов.
Объем серого вещества в островковой коре оказался относительно больше у плодоядных по сравнению с листоядными, что может быть связано с улучшенным вкусовым восприятием, поскольку плодоядным приматам важно отличать на вкус спелые, сладкие фрукты от незрелых (ну а про листоедов и так понятно, что они не гурманы).
Относительный объем неокортекса больше у обезьян по сравнению с полуобезьянами, а также у видов, живущих большими группами, и у видов, потребляющих высококалорийную пищу. При этом калорийность диеты оказалась не менее, а даже чуть более надежным предиктором объема неокортекса, чем размер группы.
Отделы мозга, связанные с пространственным мышлением (это прежде всего гиппокамп и ряд прилегающих областей), относительно сильнее развиты у полуобезьян, а также у видов с низкокалорийной диетой и простой социальной организацией. Может быть, дело в том, что для высокосоциальных приматов, перемещающихся с места на место вместе с сородичами и живущих бок о бок с потенциальными половыми партнерами, не так критично умение ориентироваться в пространстве.
Некоторые подкорковые структуры и отделы ствола мозга (полосатое тело, бледный шар, таламус, гипоталамус, мозжечок, продолговатый мозг) относительно крупнее у полуобезьян. У видов с простой социальной структурой тоже сильнее развиты таламус, гипоталамус, мозжечок и продолговатый мозг, а также миндалевидные тела. Качество диеты положительно коррелирует с объемом субталамического ядра и отрицательно – с объемом мозжечка, гипоталамуса, эпиталамуса и продолговатого мозга.
Эти результаты в целом подтверждают идею о мозаичном характере эволюции мозга у приматов и о том, что особенности образа жизни, от которых зависит интенсивность отбора на те или иные сенсорные и когнитивные функции, могут приводить к изменению пропорций отделов мозга в ходе эволюции. Особенно хорошо это видно на примере зрительных и обонятельных отделов, относительные размеры которых явно зависят от того, насколько важную роль в жизни вида играют зрение или обоняние соответственно