Эволюция. Классические идеи в свете новых открытий — страница 19 из 97

По-видимому, разнообразие условий среды является важным фактором, не позволяющим большинству организмов отказаться от секса.

—————

Дрожжи занимаются сексом не от хорошей жизни

Хотя вопрос о том, почему большинство живых существ предпочитают сложный процесс полового размножения простому бесполому, продолжает оставаться любимой головоломкой эволюционистов-теоретиков, в общем виде эта задача была решена, по-видимому, еще Августом Вейсманом в конце XIX века (Weismann, 1889). Вейсман предположил, что секс увеличивает разнообразие потомства, тем самым предоставляя материал для отбора и повышая его эффективность, что позволяет организмам быстрее адаптироваться.

Сегодня, по прошествии века с четвертью, можно сказать, что гипотеза Вейсмана при всей ее расплывчатости и неконкретности в целом подтвердилась. Правда, попытки ее конкретизировать породили новые проблемы. Появилось несколько конкурирующих теорий, которые по-разному оценивают влияние полового размножения на эффективность разных форм отбора. Одни модели, как мы уже знаем, видят в сексе прежде всего способ ускоренного накопления полезных мутаций (повышение эффективности положительного отбора). Другие подчеркивают роль секса в отбраковке вредных мутаций (отрицательный отбор). Поставить эксперимент, который позволил бы разделить эти два эффекта, трудно, потому что мы не умеем напрямую регулировать соотношение полезных и вредных мутаций у подопытных организмов. Можно, однако, регулировать его косвенно, меняя степень благоприятности среды. «Благоприятность» означает, что организмы хорошо приспособлены именно к такой среде, многие их гены подогнаны к ней оптимальным образом. Поэтому в идеальных условиях вероятность появления полезных мутаций минимальна. В неблагоприятной среде частота полезных мутаций должна быть выше: случайные перемены с большей вероятностью пойдут на пользу организму, если ему живется плохо. Что касается вредных мутаций, то они в обоих случаях должны возникать намного чаще, чем полезные. Однако их средняя «вредность», скорее всего, будет меньше, если условия благоприятны. Дело в том, что живые организмы, как правило, имеют «запас прочности». Например, у дрожжей из бооо генов только 1000 абсолютно необходимы для выживания в идеальных условиях. Все остальные нужны для борьбы с разного рода трудностями, т. е. для жизни в неоптимальной среде (Hillenmeyer et al., 2008). Ясно, что мутации, нарушающие работу этих «дополнительных» генов, будут в среднем более вредными в стрессовых условиях, чем в оптимальных.

Все эти соображения были учтены Джереми Греем и Мэттью Годдардом из Оклендского университета (Новая Зеландия) при планировании эволюционного эксперимента, в ходе которого они попытались сравнить влияние секса на эффективность положительного и отрицательного (стабилизирующего) отбора (Gray, Goddard, 2012).

В эксперименте использовались линии дрожжей, различающиеся по скорости мутирования и по способности к сексу. Наряду с обычными, «дикими» дрожжами, у которых средняя частота мутирования составляет 6,9×10−8 мутаций на пару нуклеотидов за поколение (в геноме дрожжей 1,2×107 пар нуклеотидов), использовались дрожжи с удаленным геном MSH2. Этот ген участвует в исправлении ошибок в ДНК, поэтому его удаление привело к десятикратному ускорению мутагенеза — до 7,3×10−7 мутаций на пару нуклеотидов за поколение.


Жизненный цикл дрожжей Saccharomyces cerevisae.


Кроме того, чтобы лишить часть подопытных линий способности к сексу, авторы удалили у них два гена (SPO11 и SPO13), необходимых для мейоза. В результате получились «бесполые» дрожжи, не отличающиеся от обычных ни по скорости размножения, ни по другим существенным характеристикам. Дрожжи размножаются бесполым путем (почкованием), пока им хватает пищи. Голодание стимулирует мейоз, в результате которого диплоидная клетка превращается в четыре гаплоидные споры. Гаплоидные клетки подразделяются на два пола (a и α). Разнополые клетки сливаются попарно, образуя зиготу, после чего цикл повторяется. Генно-модифицированные бесполые дрожжи при голодании тоже пытаются превратиться в споры, но вместо четырех гаплоидных спор у них получаются две диплоидные, вполне жизнеспособные и не нуждающиеся в слиянии с кем бы то ни было.

Всего, таким образом, авторы получили дрожжевые клетки четырех типов:

1) способные к сексу, с низкой скоростью мутирования;

2) способные к сексу, с высокой скоростью мутирования;

3) бесполые, с низкой скоростью мутирования;

4) бесполые, с высокой скоростью мутирования.

Половину подопытных популяций выращивали в благоприятных условиях (при температуре 30 °C в несоленой среде), остальные поместили в стрессовые условия (37 °C, 1,17 % NaCl). В общей сложности в эксперименте приняли участие 24 подопытные популяции: по три популяции каждого из четырех типов эволюционировали в благоприятных и столько же — в стрессовых условиях. Эксперимент продолжался в течение 300 бесполых поколений, между которыми были равномерно распределены 11 раундов полового размножения. Все популяции одновременно подвергались голоданию, что стимулировало образование гаплоидных спор у обычных дрожжей и диплоидных — у бесполых.

Авторы следили за тем, как меняется приспособленность дрожжей по сравнению с предковым штаммом. Для этого подопытные дрожжи смешивали с предками в пропорции 1:1 и измеряли относительную скорость размножения эволюционировавшей популяции.

В благоприятных условиях ни способность к половому размножению, ни скорость мутагенеза не повлияли на ход эволюции. Приспособленность дрожжей всех четырех типов лишь слабо колебалась и спустя 300 поколений осталась на исходном уровне.

Это значит, что полезные мутации, по-видимому, почти не возникали (как и следовало ожидать в благоприятных условиях), и положительному отбору нечего было поддерживать. Результат соответствует общепринятому мнению, что в оптимальных условиях отрицательный отбор преобладает над положительным. Скорость мутирования, даже искусственно повышенная, вероятно, оказалась все же недостаточной, чтобы вызвать генетическое вырождение за 300 поколений.

В неблагоприятных условиях картина получилась другая. Наблюдался рост приспособленности у дрожжей, способных к сексу, — как у обычных, так и у «мутаторов». У бесполых дрожжей с низкой скоростью мутирования рост приспособленности был выражен намного слабее. Что же касается бесполых линий с повышенной скоростью мутирования, то их приспособленность снижалась: началось генетическое вырождение.

Рост приспособленности свидетельствует о накоплении полезных мутаций. Очевидно, в неблагоприятных условиях случайные мутации действительно оказываются полезными чаще, чем в оптимальных. Эксперимент подтвердил, что половое размножение повышает эффективность положительного отбора, помогая накапливать полезные мутации. Это видно из того, что обычные дрожжи приспособились к стрессовым условиям лучше, чем бесполые.

То, что в неблагоприятных условиях у бесполых дрожжей-мутаторов началось вырождение, говорит о том, что в такой ситуации отрицательный отбор уже не мог справиться с отбраковкой вредных мутаций, и они начали накапливаться. Тем временем точно такие же дрожжи, но только способные к сексу, в таких же условиях быстро повышали свою приспособленность. Из этого следует, что в неблагоприятных условиях важную роль играют обе формы отбора, причем половое размножение повышает эффективность обеих.

—————

Микробам — горизонтальный перенос, высшим организмам — половое размножение

Рассмотренные примеры говорят о пользе скрещивания и перемешивания генов при половом размножении. Но у бактерий и архей вместо настоящего амфимиксиса работает горизонтальный перенос. Будет ли секс и в этом случае выполнять ту же функцию — быстро приспосабливать организмы к изменившимся условиям? Если это так, то ГПГ у микробов должен быть очень широко распространен и практиковаться не только между популяциями, но главным образом между особями одной популяции. Полезный аллель, который легко позаимствовать, скорее всего, окажется у близкого собрата.

Традиционно преобладала точка зрения, что отбор у бактерий все-таки в основном клональный, действующий на уровне целых геномов. Это значит, что ГПГ не играет существенной роли в повседневных «попытках» прокариот приспособиться к изменчивой среде. Эта гипотеза теперь, при нынешнем развитии биотехнологий, легко проверяема. Такой труд взяли на себя биологи из Массачусетского технологического института: они показали, что традиционная точка зрения неверна или верна только отчасти и что в своей повседневной переменчивой жизни микробы то и дело заимствуют гены у своих ближайших родичей — других микробов той же популяции (Shapiro et al., 2012).

Биологи работали с двумя популяциями морских планктонных бактерий Vibrio cyclitrophicus. Эти популяции, обозначаемые буквами L и S, находятся в процессе адаптации к разным экологическим нишам: часть бактерий приурочена к крупным (L), а другая — к мелким (S) частицам, отфильтрованным из морской воды. Результаты генетического анализа говорят о том, что разошлись они недавно (Hunt et al., 2008). По-видимому, популяции L и S приспосабливаются к жизни на разных представителях зоо- или фитопланктона[41].

Авторы решили выяснить, какой из двух процессов преобладает на начальных этапах экологической дифференциации — отбор отдельных генов с удачными мутациями, которые распространяются за счет ГПГ, или клональный отбор, работающий с целыми геномами.

Различить эти две ситуации можно, сравнив внутри- и межпопуляционный генетический полиморфизм (вариабельность) изучаемых популяций. Если преобладает отбор на уровне генов, две популяции должны четко отличаться друг от друга по небольшому числу генов — тех, от которых зависят экологические свойства популяций. При этом различающиеся участки генома должны иметь пониженный уровень внутрипопуляционного полиморфизма хотя бы в одной из двух популяций. Ведь на каждый такой участок действовал отбор, который поддерживал какой-то один вариант этого участка, вытесняя из генофонда другие его варианты (см. раздел «Следы естественного отбора» в главе 2). Напротив, те участки генома, которые у двух популяций сходны, должны быть более полиморфными в пределах каждой популяции, причем наборы вариантов (аллелей) могут быть одинаковыми в двух популяциях. Ведь отбор, связанный с приспособлением к новой нише, на них не действовал и они могли сохранить исходный полиморфизм, накопленный предками.