Эволюция. Классические идеи в свете новых открытий — страница 56 из 97

I придает цветам ярко-синий или яркокрасный цвет. Аллель I доминантен по отношению к i.

В зоне раздельного проживания все растения P. drummondii имеют генотип iiHH и, соответственно, бледно-голубые цветы. В области совместного проживания подавляющее большинство растений этого вида имеют генотип IIhh и ярко-красные цветы. «Рекомбинантные» растения iihh с бледно-розовыми цветами и I-H- с ярко-синими встречаются только на границе этих двух частей ареала.

Чтобы проверить гипотезу о том, что ярко-красная окраска является адаптацией для предотвращения гибридизации, прежде всего нужно было убедиться, что эта окраска не дает флоксам каких-то иных преимуществ. Ведь могло оказаться и так, что природные условия восточного Техаса почему-то благоприятствуют красным цветам, а усиление тут ни при чем.

Авторы вывели четыре линии флоксов P. drummondii, гомозиготных по генам окраски (IIHH — синие, IIhh — красные, iiHH — голубые, iihh — розовые). Семена всех четырех типов затем высаживались в равной пропорции на огражденных участках на территории биостанции Техасского университета.

Оказалось, что при отсутствии риска межвидовой гибридизации ни выживаемость, ни плодовитость флоксов P. drummondii не зависят от окраски цветов. Все четыре генотипа имеют одинаковую приспособленность. Это весомый аргумент в пользу того, что ярко-красная окраска не является адаптацией к местным условиям среды.

Эксперименты по искусственному опылению показали, что защиты от межвидовой гибридизации на уровне взаимодействия пыльцы и пестика у флоксов нет: оплодотворение при внутри- и межвидовых скрещиваниях происходит одинаково успешно.

Теперь нужно было проверить, помогает ли ярко-красная окраска избежать межвидовой гибридизации. Для этого на каждом участке в случайном порядке сажали 105 саженцев голубых P. drummondii из зоны раздельного проживания — это контроль в данном эксперименте, и 115 флоксов другого вида — P. cuspidata, у которых цветы всегда голубые, и вместе с ними 30 саженцев одной из четырех гомозиготных линий P. drummondii. Когда растения вырастали и давали семена, ученые брали по 100–150 случайно выбранных семян от опытных и контрольных растений P. drummondii и при помощи генетического анализа устанавливали их «отцовство», подсчитывая в каждой выборке число гибридных семян (т. е. получившихся в результате межвидового скрещивания).

У контрольных голубых растений доля гибридных семян оказалась высокой: от 28 до 44 % на разных участках. Столь же высокий уровень межвидовой гибридизации был обнаружен у гомозиготных голубых и розовых P. drummondii. Однако у ярко-красных и ярко-синих флоксов доля гибридных семян оказалась вдвое ниже. Таким образом, яркость окраски (но не ее оттенок) действительно защищает флоксы от межвидовых скрещиваний. Поскольку гибридные растения имеют пониженную плодовитость, из этого следует, что там, где флоксы двух видов растут рядом друг с другом, действует сильный отбор, благоприятствующий аллелю яркой окраски I и отбраковывающий растения с аллелем бледной окраски i.

Но каким образом яркая окраска защищает от гибридизации? Ответить на этот вопрос помогли наблюдения за бабочками-опылителями. Главным опылителем обоих видов флоксов в симпатрической зоне является бабочка Battus philenor из семейства парусников (Papilionidae). Кроме того, в опылении участвуют различные виды бабочек-толстоголовок (семейство Hesperiidae). Как выяснилось, обе разновидности опылителей демонстрируют сходное поведение на участках, где разноцветные флоксы растут вперемешку. Бабочки не делают различий между голубыми и розовыми цветами. Например, насекомое, посетившее голубой цветок, в следующий раз с равной вероятностью сядет на голубой или розовый. К какому виду относится растение с голубыми цветами (к P. drummondii или P. cuspidata), бабочкам тоже все равно. Этот факт хорошо согласуется с тем, что уровень межвидовой гибридизации одинаково высок у голубых и розовых P. drummondii.

Совсем другая картина наблюдалась на участках, где наряду с голубыми цветами росли ярко-красные или ярко-синие. Здесь бабочки проявляли постоянство, совершая перелеты между цветами одинаковой яркости намного чаще, чем между яркими и бледными цветами. Так, бабочка, посетившая голубой цветок P. cuspidata, сядет после этого на голубой или розовый цветок P. drummondii с вдвое большей вероятностью, чем на ярко-синий или ярко-красный. В обратную сторону закономерность тоже работает: если бабочка села на яркий цветок, после этого она, скорее всего, посетит другой яркий цветок, синий или красный. Этот факт полностью объясняет вдвое меньшую частоту гибридизации у растений с яркими цветами: бледные цветы бывают и того и другого вида, а яркие — только у одного. Следовательно, яркая окраска не только помогает избежать попадания пыльцы P. cuspidata на пестики P. drummondii, но и препятствует растрачиванию пыльцы второго вида на опыление «чужаков».

Полученные результаты показывают, что яркая окраска цветов у P. drummondii в зоне совместного проживания с другим видом закрепилась под действием механизма усиления как адаптация для предотвращения гибридизации. Эффективность адаптации обусловлена поведением опылителей. Ранее уже было известно, что в пределах одного вида насекомых, питающихся нектаром, у разных особей могут быть разные предпочтения при выборе цветов. Эти различия могут быть отчасти врожденными, отчасти приобретенными, т. е. связанными с индивидуальными привычками. Насекомые ведь тоже способны к обучению, а перелетать с цветка, где был подходящий нектар, на другой такой же — поведение в высшей степени логичное и адаптивное.

Экспериментально показано, что видообразованию у цветковых растений могут способствовать изменения внешнего вида или аромата цветов, ведущие к смене насекомого-опылителя (см. ниже). Хопкинс и Раушер не только продемонстрировали механизм усиления в действии, но и показали, что изменение цветка может способствовать видообразованию, даже если насекомые-опылители остаются прежними.

В отличие от «гена яркости» роль «гена оттенка» осталась невыясненной. В настоящее время он, по-видимому, бесполезен для флоксов. Возможно, он был полезен в прошлом. Например, какой-то вид опылителей, ныне вымерший или ставший редким в этом районе, мог различать и запоминать оттенки и летать с красных цветов на красные или с синих на синие. Ведь насекомых так много и эволюционируют они быстро!

Невидимые барьеры для новых видов

Аллопатрическое видообразование, в том числе с участием механизма усиления в зонах вторичного контакта, — сценарий общепризнанный и хорошо документированный. Симпатрическое видообразование, или видообразование без физических барьеров, традиционно считалось более спорной моделью. Большую роль в ее дискредитации сыграл выдающийся и весьма авторитетный эволюционист Эрнст Майр, проживший очень долгую жизнь (1904–2005).

Вообще-то ясно, что для появления каждого из многих миллионов видов, обитающих на планете, физических барьеров просто не хватило бы — биосфера недостаточно разобщена для этого. Симпатрическое видообразование должно существовать, но было непонятно, как оно может происходить. Допустим, часть особей в популяции стала чем-то отличаться от остальных. Если эти особи не отделены от прочих физическим барьером, то любое отличие, казалось бы, должно быстро «размыться» из-за скрещиваний с неизменившимися сородичами — раствориться в общем генном потоке. Полезное отличие станет общим достоянием, вредное исчезнет. В любом случае вид ни за что не разделится на два, если у отличающихся особей не возникнет эндогамия — предпочтение себе подобных в качестве партнеров.

Механизмы появления эндогамии не вполне ясны, поэтому и вся идея симпатрического видообразования выглядела сомнительной. Нужны были факты. Нужно было найти виды, чье симпатрическое происхождение было бы безоговорочно доказано. А это оказалось не так-то просто. Было описано множество случаев вероятного симпатрического видообразования, но какая-то доля сомнения всегда оставалась.

Лишь в 2006 году (через год посли смерти Майра) были описаны первые бесспорные случаи симпатрического видообразования. Одно исследование связано с рыбами цихлидами из маленького озера Апойо в Никарагуа. Это круглое озеро диаметром 5 км и глубиной до 200 м представляет собой залитый водой вулканический кратер. Озеро полностью изолировано от других водоемов и образовалось менее 23 тыс. лет назад.

В озере живет два вида цихлид: широко распространенный Amphilophus citrinellus и встречающийся только в этом озере A. zaliosus. Авторы исследования — Марта Барлуэнга и ее коллеги из Университета г. Констанц (Германия) — сумели доказать, что A. zaliosus произошел от A. citrinellus прямо в этом озере, т. е. в условиях симпатрии (Barluenga et al., 2006).

Первым делом ученые сравнили последовательности митохондриальной ДНК (мтДНК) у 120 рыб обоих видов из оз. Апойо и 500 представителей A. citrinellus из других озер. Анализ показал, что все рыбы из Апойо, относящиеся к обоим видам, образуют монофилетическую ветвь (имеют единое происхождение), причем варианты мтДНК из Апойо не встречаются в других озерах. Это значит, что озеро было заселено единожды, повторных колонизаций и обмена генами с жителями других озер не было. Живущие ныне в озере рыбы, скорее всего, являются потомками одной самки (сколько было самцов-основателей, по мтДНК сказать нельзя), когда-то попавшей в озеро. И самка эта относилась к виду A. citrinellus. Анализ генетических маркеров ядерной ДНК подтвердил результаты, основанные на мтДНК.

Цихлиды A. citrinellus и A. zaliosus из озера Апойо (Никарагуа).

Данные по генетическому разнообразию цихлид из озера Апойо говорят о том, что два вида полностью репродуктивно изолированы (не скрещиваются друг с другом). О том же свидетельствуют поведенческие эксперименты, показавшие, что эти рыбы безошибочно выбирают в качестве брачных партнеров представителей своего вида. Наконец, о том, что