Эволюция. Классические идеи в свете новых открытий — страница 67 из 97

optix, не изменился за те 15–20 млн лет, которые отделяют современные виды Heliconius от их последнего общего предка. По-видимому, «осмысленные» изменения затронули только регуляторные участки гена, от которых зависит, где и когда будет синтезироваться этот белок в ходе развития организма.

Правда, сами эти регуляторные участки и конкретные мутации, ответственные за изменение окраски, авторы не выявили. Это технически крайне трудная задача, требующая создания трансгенных бабочек. С мухами-дрозофилами такое уже научились проделывать (см. раздел «Загадка узорчатых крыльев» в главе 5), с бабочками — пока нет.

Регулирует ли ген optix окраску крыльев также и у других бабочек, не относящихся к роду Heliconius? Чтобы выяснить это, авторы изучили экспрессию optix в зачатках крыльев у трех неродственных видов бабочек (Agraulus vanillae, Vanessa cardui, Ephesia kuehniella). Никакой корреляции между узором крыла и работой optix у этих видов обнаружить не удалось. Зато оказалось, что там, где в зачатке крыла у них работает ген optix, формируются чешуйки особой формы — с заостренными концами. У этих бабочек ген optix заведует не окраской крыла, а формой чешуек. Возможно, такова была исходная функция optix в крыльях у бабочек. У геликоний этот ген приобрел новую функцию — стал управлять развитием красных пятен.

Изящное подтверждение этой гипотезы авторы обнаружили, изучив крылья у нескольких геликоний-мутантов, у которых пятна на крыльях были не красными, а белыми. Оказалось, что чешуйки, покрывающие эти пятна, у бабочек-мутантов имеют характерную заостренную форму. Вероятно, это своеобразный атавизм: у геликоний-мутантов ген optix сработал так, как он работает у других бабочек, запустив «старую» программу формирования заостренных чешуек вместо «новой» — программы формирования чешуек красного цвета.

Хотя авторам и не удалось выявить конкретные мутации, ответственные за изменения окраски крыльев у геликоний, того, что сделано, вполне достаточно для нескольких важных выводов.

Во-первых, стало ясно, что параллельная эволюция красных пятен у геликоний происходила за счет изменений одного и того же, а не разных генов. Поскольку то же самое ранее было показано для черных пятен на крыльях дрозофил, можно предположить, что это некое общее правило (пределы применимости которого еще предстоит выяснить).

По-видимому, у бабочек, как и у дрозофил, существует некая первичная генетическая «разметка» крыла, в которой участвуют гены — регуляторы высокого уровня, такие как ген wingless. Другие гены-регуляторы, влияющие на окраску крыла (yellow у дрозофил или optix у геликоний), могут в результате мутаций и отбора обзавестись регуляторными участками (энхансерами, или сайтами связывания транскрипционных факторов), благодаря которым их активность в зачатках крыльев оказывается «привязана» к первичной разметке. Небольшие изменения этих регуляторных участков могут приводить к радикальным изменениям окраски.

Общим правилом является также и удивительная многофункциональность генов — регуляторов развития, каждый из которых может управлять несколькими абсолютно разными процессами на разных этапах развития. Это относится и к гену optix, отвечающему за развитие глаз и красных пятнышек (или заостренных чешуек), и к упомянутым генам yellow и wingless, и ко многим другим регуляторам развития.

Эти гены являются, образно говоря, профессиональными переключателями, которым в принципе все равно, что именно переключать. Работа всей системы генетических переключателей определяется не столько кодирующими, сколько регуляторными участками этих генов. Регуляторные участки представляют собой, как правило, очень короткие последовательности нуклеотидов, распознаваемые белками-регуляторами. Случайные мутации с легкостью могут изменить регуляторный участок таким образом, что к нему начнет прикрепляться какой-нибудь другой регулятор. Вероятность удачной мутации в регуляторных частях таких генов существенно выше, чем в кодирующих. В результате таких мутаций фрагменты генно-регуляторных сетей, исходно управлявшие развитием одних частей тела, могут дополнительно взять на себя регуляцию чего-нибудь еще[84]. По мнению многих специалистов, именно изменения регуляторных областей генов — регуляторов развития играют ключевую роль в эволюции многоклеточных (True, Carroll, 2002). Мы поговорим об этом подробнее в заключительной главе.

—————

Эволюция, повернувшая вспять

До какого-то момента процесс видообразования остается обратимым. Изменение условий может привести к тому, что наметившиеся различия сгладятся, а начавшие расходиться популяции снова объединятся. Это может произойти даже с «хорошими» видами, по поводу которых у специалистов нет сомнений, виды это или все-таки разновидности. В наши дни основной причиной таких «обратных эволюционных ходов» является антропогенное воздействие на среду. Например, по словам ихтиолога М. В. Мины из Института биологии развития РАН, под угрозой слияния оказались многие виды цихлид озера Виктория (Мина, 2001). Причина — в неразумном решении вселить в озеро нильского окуня, крупного хищника, который быстро размножился в озере и поставил многие местные виды под угрозу физического уничтожения. Что касается видов, еще не съеденных окунем, то некоторые из них начали скрещиваться друг с другом, «растворяя» свои уникальные особенности в смешанных генофондах. Дело в том, что нильский окунь — рыба крупная. Его нельзя просто высушить на солнышке, как испокон веков поступали местные рыбаки с мелкой рыбешкой (теми самыми цихлидами). Окуня нужно коптить, а для этого нужны дрова. Вырубка деревьев по берегам озера усилила эрозию почв. Дожди стали смывать в озеро больше глины и песка. Озерная вода, и без того мутноватая, замутилась еще больше. В мутной воде многие цихлиды перестали различать нюансы окраски потенциальных партнеров, служившие изолирующим барьером между видами. Началась гибридизация.

Пассивное накопление генетических различий по модели Добжанского — Мёллера у цихлид требует обычно от 4 до 14 млн лет для развития полной несовместимости. Возраст озера Виктория намного меньше, поэтому большинство местных цихлид еще сохранили способность к гибридизации. Таким образом, вселение одного-единственного вида поставило под угрозу «великий эволюционный эксперимент» природы.

Еще один пример обратного хода эволюции исследовали экологи из Швейцарии и Канады. Ученые воспользовалась превосходными данными по сигам из швейцарских горных озер. В их распоряжении имелись профессионально собранные данные 1940-х годов, а также современные материалы, отражающие разнообразие сигов в начале XXI века (Vonlanthen et al., 2012). В науке так всегда бывает: чем надежнее данные, тем интереснее результат. Не стало исключением и это исследование. Обычно при анализе эволюции оценивают степень расхождения видов, здесь же наблюдали обратное. Ученые зарегистрировали эволюцию, повернувшую вспять.

Использовались данные по 17 озерам в предгорьях Швейцарских Альп. Это глубокие водоемы с хорошо аэрированной водой, изначально олиготрофные, т. е. с малым содержанием органики. В озерах издавна обитали сиги (род Coregonus). Они заселились после освобождения этой территории от ледника (10–12 тыс. лет назад) и начали осваивать новое экологическое пространство. В ходе специализации и разделения ниш в каждом озере образовались «букеты» симпатрических видов (1–5 в каждом озере), в том числе характерные пары экологических аналогов. В каждой такой паре один вид предпочитает мелководья, питается мелкой добычей, нерестует в зимние месяцы; обычно это крупные рыбы с небольшим числом тычинок на жаберных дугах. Второй вид — его контрагент; обычно это мелкая рыба с большим числом жаберных тычинок, предпочитает жить на глубине, а нереститься летом, питается более крупным зоопланктоном. Число жаберных тычинок отражает пищевую специализацию, четко наследуется и считается хорошим маркером видовой принадлежности. Учитывая разночтения систематики рода Coregonus, в озерах насчитывается всего около 25 видов и подвидов сигов.

Уменьшение разнообразия сигов в озерах предгорьев Альп. а — ситуация в начале xx века: существует два вида — крупный и мелкий. Крупный обитает в неглубоких водах, мелкий — где поглубже, число жаберных тычинок у крупного меньше (маленькие гистограммы напротив рыбок) в соответствии с размером предпочитаемой добычи (маленькие графики). Кислорода в воде достаточно. б — ситуация после эвтрофикации, когда в придонных слоях воды мало кислорода. Число жаберных тычинок и размер предпочтительной добычи у мелких рыб уменьшается. в — исчезновение глубоководного вида. У мелководного при этом увеличивается генетический полиморфизм и вариабельность по числу жаберных тычинок и размеру добычи. Из McKinnon, Taylor, 2012.

Таково было состояние озерных систем до 1950-х годов, описанное в классических трудах европейских ихтиологов. Каковы же современные данные? А они таковы, что около четверти видов сигов исчезло из видового реестра, причем вымерли в основном мелкие глубоководные виды. Связано это с загрязнением озер и резким повышением содержания органики в воде. Механизм вымирания на первый взгляд прост. Увеличение количества органики вызывает бурный рост микрофлоры, которая окисляет органику растворенным в воде кислородом. В результате содержание кислорода, особенно в придонных слоях, падает, нерестилища глубоководных рыб оказываются непригодными, молодь гибнет и вид исчезает.

Схема как будто проста, но, если поразмышлять о деталях процесса, все окажется интереснее. Вид быстро исчезает… Совсем исчезает? Ведь исчезнуть можно по-разному. В данном случае глубоководный вид слился с мелководным. Два вида начал