Эволюция: Неопровержимые доказательства — страница 34 из 65

сильный отбор, вызывающий быстрые перемены, и нам лучше искать среди животных и растений, у которых время между сменами генераций короткое, так что эволюционные изменения можно увидеть в течение нескольких поколений. И лучше нам поискать пример не среди бактерий: публика хочет увидеть естественный отбор у так называемых «высших» растений и животных.

Во-вторых, не стоит рассчитывать, что мы увидим нечто большее, чем маленькие изменения одного или нескольких признаков биологического вида (микроэволюционные изменения). Учитывая постепенный характер эволюции, не стоит ожидать, что нам удастся засвидетельствовать, как отбор трансформирует один «тип» растения или животного в другой – так называемую макроэволюцию – в течение одной человеческой жизни. Хотя макроэволюция и происходит в наши дни, но мы просто не проживем столько, чтобы увидеть ее плоды. Помните: вопрос не в том, происходят ли макроэволюционные перемены (благодаря палеонтологической летописи мы уже знаем, что происходят), но в том, были ли они вызваны естественным отбором и способен ли естественный отбор создавать сложные черты и организмы.

Еще один фактор, который не позволяет наблюдать отбор в режиме реального времени, состоит в том, что самый распространенный тип естественного отбора не приводит к изменениям видов. Каждый вид очень неплохо адаптирован, а это означает, что отбор уже привел его в соответствие с окружающей средой. Случаи изменений, которые происходят, когда вид сталкивается с новыми экологическими условиями, возможно, относительно редки по сравнению с периодами, когда никаких изменений нет и адаптироваться не к чему. Однако это не означает, что отбор не происходит. Например, если у некоего вида птиц развился оптимальный для окружающей среды размер тела и если эта среда не меняется, то отбор проявляется лишь в том, чтобы отбраковывать особей, которые больше или меньше оптимального размера. Однако такой тип отбора, называемый стабилизирующим отбором, не изменит средний размер птицы: если вы рассмотрите популяцию и сравните два ее поколения, то никаких особых перемен не заметите (хотя гены, отвечающие за появление как слишком больших, так и слишком маленьких особей были уничтожены). Это же явление наблюдается, например, у новорожденных детей применительно к их весу при рождении. Статистика родильных домов стабильно показывает, что новорожденные, у которых при рождении средний вес составляет около 3,5 кг, и в США, и Европе выживают лучше, чем новорожденные с меньшим весом (т. е. или недоношенные, или рожденные плохо питавшимися матерями) или с большим весом (такие обычно рождаются с трудом).

Следовательно, если мы хотим наблюдать за отбором в действии, нам нужно искать среди видов с быстрым воспроизведением и адаптирующихся к новой среде. Такое, вероятнее всего, произойдет с видами, которые или вторгаются в новые места обитания, или подвергаются воздействию серьезных и резких изменений окружающей среды. И в самом деле, подходящие наглядные примеры обнаруживаются именно среди таких видов.

Самый известный пример я не буду здесь расписывать подробно, поскольку он уже неоднократно и детально изображался во множестве других источников (см., например, превосходную книгу Джонатана Вайнера «Клюв вьюрка: История эволюции в наше время» (The Beak of the Finch: A Story of Evolution in Our Time) – это пример адаптации птицы к аномальным переменам климата). Среднего земляного вьюрка (Geospiza fortis) Галапагосских островов в течение нескольких десятилетий изучали Питер и Розмари Грант вместе со своими коллегами из Принстонского университета. В 1977 г. из-за сильнейшей засухи на острове Галапагосского архипелага Дафне Майор катастрофически истощился запас семян. Вьюрок, который в обычных условиях предпочитает мелкие мягкие семена, был вынужден питаться более жесткими и крупными. Эксперименты показали, что более твердые семена легко разгрызать только птицам покрупнее, у которых и клювы крепче и больше. В результате во всей популяции досыта питались только более крупные особи, а вьюрки поменьше или умирали от голода, или слишком плохо питались, чтобы размножаться. Вьюрки с более крупными клювами оставили больше потомства, и к следующему поколению естественный отбор увеличил размер клюва на 10 % (размер тела у вьюрка также увеличился). Для эволюционного изменения это ошеломляющий темп, гораздо более быстрый, чем любое изменение, зафиксированное в палеонтологической летописи. Для сравнения: мозг в родословной человека в среднем увеличивается на 0,001 % за поколение. Все условия, необходимые для эволюции путем естественного отбора, Гранты и их коллеги зафиксировали в других исследованиях: особи внутри изначальной популяции варьировали по толщине клюва, в большой степени эти вариации были генетически обусловлены, и количество потомства, которое оставляли особи с клювами разного размера, изменялось в предсказуемом направлении.

Учитывая, как важна для выживания пища, способность добывать, есть и переваривать ее – это мощная сила естественного отбора. Многие насекомые проявляют пищевую избирательность: они питаются и откладывают яйца только на одном или нескольких видах растений. В таких случаях насекомому требуются адаптации, чтобы употреблять в пищу определенные растения, в том числе подходящие органы пищеварения, чтобы получать из растения питательные вещества, особый метаболизм, который позволит детоксифицировать любые растительные яды, и такой репродуктивный цикл, при котором потомство производится тогда, когда есть пища (т. е. когда у растений период плодоношения). Поскольку существует множество связанных пар насекомых и растений, которыми они питаются, то за время эволюции переключения с одного растения на другое должны были происходить множество раз. Эти переключения, представляющие собой аналог переселения в новую среду обитания, неизбежно должны были сопровождаться сильным отбором.

На практике мы наблюдали такой процесс в последние несколько десятилетий у клопа Jadera haematoloma в Новом Свете. Jadera haematoloma живет в разных частях Соединенных Штатов на двух местных растениях: мыльном дереве в южно-центральной части США и кардиоспермуме халикакабском в южной Флориде. Своим длинным, похожим на иглу хоботком клоп протыкает плоды этих растений и выедает семена, разжижая их содержимое и высасывая. Но за последние 50 лет клоп освоил питание тремя другими растениями, завезенными в эту среду обитания. Плоды этих растений по размеру сильно отличаются от плодов растений-хозяев: у двух они намного крупнее, а у третьего гораздо меньше.

Скотт Кэрролл и его коллеги предсказали, что эта смена растения-хозяина приведет с помощью естественного отбора к изменению размера хоботка у клопа. У клопов, обитающих на растениях с более крупными плодами, неизбежно разовьется более длинный хоботок, помогающий добираться до плодов, а клопы, колонизировавшие растения с плодами помельче, будут эволюционировать в противоположном направлении. Именно так и произошло, причем за несколько десятилетий размер хоботка у клопа изменился приблизительно на 25 %. Может показаться, что это не так уж много, но по эволюционным меркам это колоссальные изменения, особенно за короткий период в сто поколений{30}. Если представить это в перспективе, то, если бы хоботок клопа эволюционировал в таком темпе и дальше на протяжении 10 000 поколений (5000 лет), он увеличился бы примерно в 5 млн раз, достиг 3000 км в длину и клоп смог бы выедать этим хоботком плоды размером с Луну! Конечно, я привожу эти фантастические и несбыточные параметры только для того, чтобы показать кумулятивную силу изменений, которые кажутся небольшими.

Вот еще одно предсказание: в условиях продолжительной засухи естественный отбор должен привести к эволюции растений, которые зацветают раньше, чем их предки. Произойдет это потому, что во время засухи почва после дождей высыхает очень быстро. Если вы – растение, которое не умеет быстро цвести и давать семена в засуху, потомства вы не оставите. В то же время при нормальных погодных условиях выгоднее отложить цветение и подождать с ним, пока не вырастешь побольше и не произведешь больше семян.

Это предсказание было проверено в естественном эксперименте с участием дикой репы (Brassica rapa), завезенной в Калифорнию примерно 300 лет назад. С 2000 г. Южная Калифорния в течение пяти лет страдала от сильнейшей засухи. Артур Уэйс и его коллеги из Калифорнийского университета измерили время цветения репы в начале и в конце этого периода. И, разумеется, естественный отбор изменил время цветения в точности согласно предсказанию: после засухи растение начало цвести на неделю раньше, чем цвели его предки.

Найдется еще много примеров, но все они подтверждают одно и то же: мы можем стать очевидцами естественного отбора, ведущего к улучшению приспособленности. В книге биолога Джона Эндлера «Естественный отбор в дикой природе» (Natural Selection in the Wild) приведено более 150 исследованных случаев эволюции, и примерно в трети случаев отчетливо видно, как именно действует естественный отбор. Мы видим, как плодовые мушки адаптируются к экстремальным температурам, пчелы – к конкурентам, а гуппи приобретают более тусклый окрас, чтобы их не заметили хищники. Сколько еще примеров требуется?

Может ли отбор породить сложные структуры?

Но даже если мы согласимся, что естественный отбор в природе работает, каков именно объем его работы на самом деле? Да, конечно, отбор может изменить клюв птицы или время цветения растения, но может ли он породить сложные структуры? Как насчет таких замысловатых черт, как, например, конечности у четвероногих (тетрапод), или изощренных биохимических адаптаций наподобие свертывания крови, которая закрепляет четкую последовательность этапов, включающих много белков? А как насчет, пожалуй, самого сложного аппарата, когда-либо существовавшего на свете, – человеческого мозга?