Однако не следует забывать, что эти списки на самом деле не определены в исходном плане нервной системы. Мозг сам их создает и автоматически осуществляет связи между ними на основе пережитого опыта. В этом основной секрет новой коры. Процессы, за счет которых происходит эта самоорганизация, значительно проще, чем 300 млн процессоров новой коры. Эти процессы определены в геноме. Как я расскажу в одиннадцатой главе, объем значимой информации (после обратимого сжатия) в геноме, относящейся к функции головного мозга, составляет примерно 25 млн байт, что эквивалентно менее чем миллиону строк программного кода. Причем в реальности алгоритм еще проще, поскольку большая часть из этих 25 млн байт генетической информации относится к биологическим нуждам нейронов, а не к их способности обрабатывать информацию. Но и с 25 млн байт информации мы в состоянии справиться.
Иерархические системы памяти
Как я рассказывал в третьей главе, Джеф Хокинс и Дайлип Джордж в 2003–2004 гг. создали модель новой коры, которая включала в себя иерархические списки. Эта модель описана в книге Хокинса и Блейксли On Intelligence, опубликованной в 2004 г.[100] Более новую и очень элегантную версию теории иерархической временной памяти можно найти в докторской диссертации Дайлипа Джорджа (2008)[101]. Компания Numenta использовала эту модель в системе под названием NuPIC (Numenta Platform for Intelligent Computing) и включила в программы распознавания образов и извлечения данных для таких клиентов, как Forbes и Power Analytics Corporation. Проработав какое-то время с Numenta, Джордж занялся созданием новой компании, названной Vicarious Systems, при поддержке фонда Founder Fund (основанного Питером Тилем, также поддерживающим Facebook, и Шоном Паркером, первым президентом Facebook) и фонда Good Ventures, которым руководит сооснователь Facebook Дастин Московиц. Джордж сообщает о значительных успехах автоматического моделирования, усвоения и распознавания информации с высокой степенью иерархической сложности. Он называет свою систему «рекурсивной кортикальной сетью» и планирует использовать ее, среди прочего, для медицинской диагностики и робототехники. Метод иерархических скрытых моделей Маркова по своей математической природе очень близок к этим иерархическим системам памяти, особенно если мы позволяем ИСММ самостоятельно образовывать связи между распознающими модулями. Как было отмечено в третьей главе, ИСММ позволяет учитывать ожидаемое распределение величин всех входных сигналов в расчете вероятности соответствующего образа. Не так давно я организовал новую компанию, Patterns, Inc., которая будет заниматься созданием самоорганизующихся иерархических моделей новой коры на основе ИСММ и родственных методов для распознавания человеческой речи. Система, над которой мы работаем, будет постоянно читать различные материалы, включая «Википедию» и другие источники информации, а также слушать все, что мы говорим, и следить за всем, что мы пишем (конечно, если мы позволим). Задача заключается в создании помощника, способного отвечать на ваши вопросы — еще до того, как вы их сформулируете, — снабжать вас полезной информацией и направлять вас в течение дня.
Раздвигаем границы ИИ. Повышение компетентности
1. Длинная утомительная речь, как пенистое украшение пирога[102].
2. Предмет детской одежды, возможно, во время путешествия на корабле.
3. Виновный в поедании воинов короля Хротгара на протяжении двенадцати лет; дело поручено воину Беовульфу[103].
4. Процесс постепенного развития в мозге или в организме при беременности[104].
5. Национальный День учителя и день дерби в Кентукки.
6. Он, по выражению Вордсворта, парит, но не улетает[105].
7. Слово из четырех букв, обозначающее железную накладку на копыте лошади и коробку для карт в казино.
8. В третьем акте оперы Верди, написанной в 1846 г., этот бич божий смертельно ранен своей любовницей Одабеллой.
Примеры из викторины «Джеопарди!», на все вопросы которой Ватсон дал правильные ответы: разглагольствование, фартук, Грендель, гестация, май, жаворонок, shoe (башмак, подкова). В ответ на 8-й вопрос Ватсон ответил: «Это Аттила?» Его попросили уточнить, тогда он сказал: «Это Аттила, гунн?» — что сочли правильным ответом.
Техника, которую компьютер применяет для ответов на вопросы «Джеопарди!», очень напоминает мою собственную. Машина начинает поиск от ключевого слова в вопросе, а затем прочесывает свою память (в случае Ватсона это 15-терабайтный банк человеческих знаний) для выявления кластеров ассоциаций с этим словом. Она тщательно проверяет наилучшие совпадения с полным контекстом вопроса: категория и тип ответа, зашифрованные в вопросе время, место и пол и т. д. И когда машина чувствует себя достаточно «уверенной», она подает сигнал. Для игрока в «Джеопарди!» это мгновенный и интуитивный процесс, но я уверен, что в моей голове происходит что-то очень похожее.
Я приветствую наших новых компьютерных повелителей.
Бог мой, [Ватсон] умнее отвечает на вопросы «Джеопарди!», чем средний игрок. Он поразительно умен.
Ватсон ничего не понимает. Это огромный паровой каток.
Искусственный интеллект повсюду вокруг нас. Простое общение с кем-то по электронной почте или мобильному телефону основано на передаче информации с помощью разумных алгоритмов. Практически любой продукт, который мы сегодня используем, спроектирован при сотрудничестве человека и искусственного интеллекта и создан на автоматизированном заводе. Если бы все системы ИИ завтра объявили забастовку, наша цивилизация покачнулась бы: мы не смогли бы получить деньги в банке, да и сами деньги исчезли бы, коммуникации, транспорт и производство — все бы остановилось. К счастью, наши разумные машины пока еще не настолько разумны, чтобы выкинуть подобный фокус.
На сегодня новое в сфере ИИ — это потрясающие возможности доступных для широкой публики приложений. Например, подумайте о самодвижущихся автомобилях Google (которые уже пробежали более 200 тыс. миль по большим и малым городам): эта технология позволит уменьшить число аварий, повысит пропускную способность дорог, избавит людей от рутинной водительской заботы и даст множество других важных преимуществ. Сегодня машины без водителя могут с некоторыми ограничениями передвигаться по общественным дорогам Невады, однако их повсеместное широкое распространение ожидается не раньше конца десятилетия. А вот технологии, которые следят за дорогой и предупреждают водителей о возможной опасности, уже установлены на многих моделях автомобилей. Одна такая технология отчасти основана на успешной модели обработки зрительных образов в головном мозге, предложенной Томазо Поджо из Массачусетского технологического института. Эта система под названием Mobil Eye разработана бывшим аспирантом Поджо Амноном Шашуа. Система предупреждает водителя о таких опасностях, как возможное столкновение или наличие на дороге ребенка; она уже установлена на автомобилях марок Volvo и BMW.
В данном разделе книги я подробнее остановлюсь на технологии распознавания речи, на то у меня есть несколько причин. Нет ничего удивительного в том, что иерархическая структура языка отражает иерархическую структуру мышления. Разговорная речь стала нашей первой технологией, письменный язык — второй. Моя собственная работа в области ИИ в значительной степени связана с изучением языка. Наконец, язык — очень мощное орудие. Ватсон прочел сотни миллионов страниц электронных источников информации и овладел содержащимся там материалом. Когда-нибудь машины будут способны овладевать всей существующей в Интернете информацией, которая объединяет практически все знания, накопленные нашей цивилизацией.
Английский математик Алан Тьюринг (1912–1954) разработал тест, теперь носящий его имя, который основан на способности компьютера вести беседу на человеческом языке с помощью письменных сообщений[106]. Тьюринг полагал, что в языке отражается весь человеческий разум и что никакая машина не сможет пройти тест, просто овладев языковыми приемами. Хотя в тесте используется письменная речь, Тьюринг считал, что машина смогла бы пройти его лишь при условии, что будет обладать разумом, эквивалентным разуму человека. Критики утверждали, что истинный тест на наличие у машины «человеческого» разума должен включать в себя также зрительную и слуховую компоненты[107]. Поскольку многие из созданных мной систем ИИ обучают компьютер воспринимать и обрабатывать человеческую речь, форму букв и музыкальные звуки, возможно, вы предполагаете, что я встану на защиту этой более полной версии теста для оценки интеллекта. Однако я согласен с тем, что исходной версии теста Тьюринга вполне достаточно — добавление зрительных или слуховых сигналов на входе или на выходе на самом деле совсем не усложняет прохождение теста.
Не нужно быть экспертом в области ИИ, чтобы оценить эффективность Ватсона в игре «Джеопарди!» Хотя я достаточно хорошо понимаю методологию, заложенную в основу действия его ключевых подсистем, это не ослабляет мою эмоциональную реакцию на то, что он (оно?) может делать. Даже полное понимание принципов работы всех подсистем (которого нет ни у кого) не помогает предсказать реакцию Ватсона на конкретную ситуацию. Машина содержит сотни взаимодействующих между собой подсистем, каждая из них одновременно прорабатывает миллионы альтернативных гипотез, так что предсказать ответ всей системы невозможно. Анализ мыслительного процесса, происходяще