Наша цифровая новая кора будет характеризоваться определенной степенью избыточности, особенно это относится к часто встречающимся образам. Это обеспечивает надежное узнавание распространенных образов, а также является ключевым элементом в достижении инвариантного распознавания различных форм образа. Однако нам придется установить правила для ограничения избыточности, поскольку не следует отводить слишком много места для сохранения самых распространенных образов низкого порядка.
Правила, ограничивающие избыточность, порог распознавания и связь порога распознавания с ожидаемостью образа, — примеры общих параметров, которые влияют на эффективность таких самоорганизующихся систем. Сначала мы выберем их значения интуитивно, а затем оптимизируем с помощью генетического алгоритма.
Очень важный этап — обучение мозга, как биологического, так и компьютерного. Как я уже писал, иерархическая система распознавания образов (и цифровая, и биологическая) за один момент осваивает не больше двух иерархических уровней (а скорее один). Чтобы усовершенствовать систему, я начну с предварительно обученных иерархических сетей, которые уже научились распознавать человеческую речь, печатные буквы и структуры разговорного языка. Такая система сможет читать документы, написанные разговорным языком, но за один раз по-прежнему сможет осваивать примерно один понятийный уровень. Ранее усвоенные понятия создадут достаточно прочную основу для продвижения на следующие уровни. Система может вновь и вновь обращаться к уже прочитанным документам, достраивая новые понятийные уровни при каждом следующем прочтении. Так и люди глубже понимают текст, когда читают его повторно. В нашем доступе имеются миллиарды страниц информативного материала, такого как «Википедия».
Система также будет содержать модуль критического мышления, который станет осуществлять постоянное сканирование всех существующих образов и оценивать их совместимость с другими образами (идеями) цифровой новой коры. У биологической новой коры такой функции нет, вот почему люди иногда совмещают в своей голове совершенно несовместимые идеи. В случае обнаружения противоречивых данных модуль попытается найти решение, используя как кортикальные структуры самой системы, так и весь массив имеющихся литературных данных. Принятие решения может просто сводиться к установлению некорректности одной из идей (если она противоречит большинству имеющихся данных). В более конструктивном плане может быть выявлена идея более высокого понятийного уровня, которая позволяет разрешить кажущееся несоответствие путем объяснения обеих исходных идей. Система добавит это решение в виде нового образа и свяжет его с теми идеями, которые запустили поиск. Модуль критического мышления будет работать постоянно.
Кроме того, я предполагаю установить модуль, который вы являет нерешенные вопросы в различных дисциплинах. Этот модуль будет искать ответы на подобные вопросы во всех возможных источниках информации также на постоянной основе. Как я объяснял в начале книги, хранящаяся в новой коре информация состоит из глубоко угнездившихся друг в друге образов и, следовательно, является полностью метафорической. Мы можем использовать конкретный образ для поиска решения практически в любой несвязанной области.
В качестве примера вспомните метафору, которую я приводил в четвертой главе, связывая случайные движения молекул газа и случайность эволюционных изменений. Молекулы газа в банке движутся непредсказуемым образом, и все же через определенное время все они из этой банки выйдут. Я отмечал, что это наталкивает на важный вопрос об эволюции разума. Подобно молекулам газа, эволюционные изменения тоже происходят во всех направлениях, не имея какой-либо цели. Однако мы наблюдаем изменения в сторону усложнения и усовершенствования разума и в итоге — появление новой коры, способной осуществлять иерархическое мышление. Таким образом, можно наблюдать, как бесцельный и ненаправленный процесс (в термодинамическом плане) может привести к полезному результату (в плане биологической эволюции).
Я также уже писал о том, что догадка Чарлза Лайеля о роли небольших изменений горных пород под действием воды в формировании гигантских каньонов подтолкнула Чарлза Дарвина к аналогичным наблюдениям о роли малых изменений в формировании видов живых организмов. Поиск таких метафор будет еще одним непрерывным процессом в работе цифрового мозга.
Нам следует найти способ обрабатывать одновременно несколько списков, что эквивалентно структурному мышлению. Списком может быть определение ограничений, которым должно удовлетворять решение. Каждый шаг может запускать рекурсивный поиск в существующей иерархии идей или в доступной литературе. Кажется, человеческий мозг способен одновременно обрабатывать четыре таких списка (без помощи компьютера), но у цифровой коры таких ограничений быть не должно.
Мы также хотим усилить наш искусственный мозг такой способностью, которой блестяще владеют компьютеры: речь идет о способности управляться с огромными массивами данных, а также быстро и эффективно применять известные алгоритмы. Например, Wolfram Alpha сочетает в себе возможности множества научных методов и применяет их к тщательно подобранным данным. Такие системы продолжают совершенствоваться, учитывая заявление Вольфрама об экспоненциальном сокращении случаев отказов системы.
Наконец, нашему новому мозгу нужна цель. Цель выражается в виде набора задач. Когда речь идет о биологическом мозге, задачи определяются центрами удовольствия и страха, унаследованными от старого мозга. Эти примитивные двигатели созданы биологической эволюцией для того, чтобы вид мог выжить, но новая кора научила нас сублимировать их. Задача Ватсона состоит в ответах на вопросы «Джеопарди!» Еще одна просто формулируемая задача может заключаться в прохождении теста Тьюринга. Чтобы это сделать, цифровой мозг должен уметь по-человечески изложить свою вымышленную историю, чтобы претендовать на роль реального (биологического) человека. Он, кроме того, должен уметь скрывать свои способности, поскольку любую систему, которая обладает такими знаниями, как, скажем, Ватсон, очень легко отличить от человека.
Но интереснее то, что мы можем поставить перед нашим новым мозгом более амбициозную задачу, такую как создание лучшего мира. Конечно, на этом пути возникает множество вопросов: лучшего для кого? в каком плане? для людей как биологического вида? для всех сознательных существ? если так, то кого можно считать сознательным существом?
Если небиологический мозг получит такую же способность изменять мир, как биологический мозг (на самом деле значительно большую способность, чем невооруженный биологический мозг), нам необходимо предусмотреть его морально нравственное воспитание. Начать можно с золотого правила нравственности, установленного нашими религиозными традициями.
Глава восьмаяМозг как компьютер
Наш мозг, по форме напоминающий французский деревенский хлеб, представляет собой переполненную химическую лабораторию, в которой никогда не прекращаются диалоги между нейронами. Представьте себе этот яркий клубок жизни, этот сгусток клеток мышиного цвета, эту фабрику идей, этого маленького деспота в костяной чаше, это скопление бегущих во всех направлениях нейронов, это маленькое все, этот переменчивый центр веселья, этот ящик, в который вся суть личности втиснута, как комок одежды в спортивную сумку.
Мозг существует по той причине, что распределение необходимых для выживания ресурсов и угрожающих жизни опасностей изменяется во времени и в пространстве.
Современная география мозга сохранила чудесную архаичность, как средневековая карта, в которой рядом с известными мирами соседствуют неизведанные земли, населенные монстрами.
В математике вы не понимаете вещей. Вы просто их используете.
Уже с момента появления первых компьютеров в середине XX века начались дебаты не только относительно предела их возможностей, но и относительно того, можно ли рассматривать человеческий мозг в качестве формы компьютера. Общепринятое мнение по последнему вопросу изменилось кардинально от идеи о том, что эти два обрабатывающих информацию «устройства» принципиально не различаются, к идее об их принципиальном различии. Итак, является ли наш мозг компьютером?
Когда в 1940-х гг. компьютеры впервые привлекли к себе внимание общественности, их тут же стали воспринимать в качестве мыслящих машин. Первый компьютер ENIAC[119], о создании которого было объявлено в 1946 г., пресса назвала «гигантским мозгом». По мере роста доступности компьютеров в последующие десятилетия их постоянно сравнивали с мозгом, который может делать то, чего не может обыкновенный биологический мозг.
Компьютерные программы быстро научили машины действовать в соответствии с этими рекламными заявлениями. «Общая программа для решения задач», созданная в 1959 г. Гербертом Саймоном, Дж. Клиффом Шоу и Алленом Ньюэллом в Университете Карнеги — Меллон, смогла доказать теорему, с которой не справились Бертран Рассел и Альфред Норт Уайтхед в своей знаменитой работе 1913 г. Principia Mathematica[120]. В последующие десятилетия стало ясно, что компьютеры значительно превосходят невооруженный человеческий мозг по способности решать математические задачи, диагностировать заболевания и играть в шахматы, однако робота трудно научить завязывать шнурки или понимать разговорную человеческую речь, которую запросто понимает пятилетний ребенок. С такими задачами компьютеры начинают справляться только в наши дни. Забавно, что эволюция компьютерного разума происходит в обратном направлении в сравнении с созреванием человеческого разума.