асов. Изменения подтверждаются слоистой структурой ископаемых раковин и кораллов, которую используют для подсчета количества дней и месяцев в году в период их жизни, так же как определяют возраст дерева по количеству колец на спиле его ствола. Кораллы за сутки наращивают один очень тонкий слой извести. Можно посчитать эти суточные линии роста. Их толщина меняется в течение года. Так что, имея хороший кусок коралла, можно вычислить, сколько суток было в году в ту эпоху (рис. 11.2).
Рис. 11.2. За последние 600 млн лет количество дней в году уменьшилось примерно от 420 до 365 суток. На это указывает подсчет слоев в окаменелых ракушках и кораллах. Таким образом, в прошлом сутки были короче, чем сейчас.
Наряду с долговременными эффектами приливного трения система Земля-Луна-Солнце демонстрирует нам пример относительно простой задачи трех тел с очень массивным Солнцем, расположенным очень далеко от двух других тел. Запуская космический корабль в сторону Луны, мы вынуждены решать гораздо более сложную задачу трех тел при сравнимых расстояниях между ними: в каком направлении и с какой скоростью мы должны запустить маломассивный космический корабль из окрестности Земли, чтобы он попал на Луну по удобной орбите. В общей задаче трех тел, имеющих сравнимые массы и движущихся на сравнимых расстояниях друг от друга, орбиты становятся еще сложнее (рис. 11.3).
Рис. 11.3. Орбиты в системе трех тел. Эти орбиты сложно извиваются, пока одно из тел не оказывается выброшенным, а два других остаются рядом, образовав двойную звезду, компоненты которой обращаются один вокруг другого. Это результат компьютерного моделирования, проведенного Сеппо Миккола в обсерватории Туорла (Университет г. Турку).
Время от времени два тела тесно сближаются, в то время как третье тело держится на расстоянии. Сближения повторяются вновь и вновь, причем члены тесной пары меняются. И это продолжается вплоть до распада системы, когда одно из трех тел окончательно выбрасывается. После этого орбиты становятся простыми: остается двойная система с эллиптическими орбитами, а третье тело удаляется от этой двойной. Формы и размеры окончательных орбит можно посчитать статистическим методом, но что произойдет в каждом конкретном случае, удается определить только путем долгих и точных вычислений. Часто нам вполне достаточно статистического описания. Например, в звездном скоплении сближения трех тел случаются часто, поэтому интерес представляет только их статистический эффект.
Всего сто лет назад задача трех тел была совершенно не исследована. Существовало две школы с разными подходами. Следуя идее часового механизма Лапласа, можно было описать орбиты трех тел, если были известны начальные условия. Ярым приверженцем этой теории был финский астроном Карл Сундман (1873–1949), представивший в 1912 году решение задачи трех тел в виде математической формулы. Французский математик Анри Пуанкаре (1854–1912) полагал, что «может так получиться, что маленькое различие в начальных условиях приведет к большим расхождениям в окончательных результатах». Для задачи трех тел это означает, что существует детерминистический хаос: малое изменение начальных условий приводит к столь сильному различию в окончательной картине, что результатом становится непредсказуемый хаос.
К концу XIX века вопрос о решении задачи трех тел был поставлен шведским королем Оскаром II, который обещал денежную премию за ее окончательное решение. Пуанкаре получил премию после публикации работы «О задаче трех тел и уравнениях равновесия». В этой работе Пуанкаре пришел к пониманию того, что бесконечно сложное поведение может возникнуть в простых нелинейных системах[3]. Без компьютера, обладая только математической интуицией, он смог описать многие из основных характеристик детерминистического хаоса. Сам термин «хаос» стал использоваться гораздо позднее, и сейчас он служит основой при описании сложных систем в природе (например, ограничивает точность предсказаний метеорологов).
Однако нужно сказать, что и Сундман был отчасти прав. Если одно из трех тел всегда находится вдали от двух других, то можно предсказать их орбиты и даже написать математические формулы, описывающие их. Таким образом, задача трех тел показывает две стороны природных явлений: если известны начальные условия, то на каком-то уровне или при каких-то условиях явления предсказуемы, как и утверждал Лаплас; но на другом уровне и при других обстоятельствах эти же явления непредсказуемы.
Задача трех тел существенно упрощается, если одно из этих тел пренебрежимо мало по сравнению с двумя другими. Тогда два главных тела движутся по эллиптическим орбитам одно вокруг другого и не чувствуют влияния третьего тела. Остается лишь описать орбиту этого маленького тела. Задача еще больше упрощается, если два главных тела движутся по круговым орбитам (ограниченная задача трех тел). Карл Якоби (1804–1851) сделал большой шаг в изучении этой проблемы. Его работа позволяет сразу же решить, какой тип орбит маленького тела возможен, а какой нет. Так как орбита Луны вокруг Земли практически круговая, то ограниченную задачу трех тел можно использовать для расчета движения ракеты, посланной на Луну. При путешествии к другим планетам сама планета и Солнце будут главными телами, а космический корабль будет третьим телом.
Еще одним важным приложением ограниченной задачи трех тел являются орбиты комет. Ледяные тела комет, обычно диаметром несколько километров, гораздо менее массивны, чем планеты. Если комета пролетает мимо планеты, ее притяжение слишком мало, чтобы повлиять на практически круговую орбиту планеты. С другой стороны, орбиты самих комет совсем даже не круговые. В большинстве случаев они настолько вытянуты, что похожи на параболы. В отличие от планет, которые движутся вблизи средней плоскости Солнечной системы, кометы перемещаются по орбитам, произвольно ориентированным относительно этой плоскости.
По-видимому, современные орбиты кометы сильно отличаются от исходных. Двигаясь по типичной орбите, комета удаляется от Солнца в 1000 раз дальше Плутона. Но когда она входит в область планет, особенно — в мощное гравитационное поле Юпитера, ее орбита испытывает сильные возмущения. Если в результате комета затормозится, она на длительное время может перейти на орбиту меньшего размера. Если же возмущения увеличат скорость кометы, она может вообще покинуть Солнечную систему. Даже если орбита кометы вначале лежала в плоскости Солнечной системы, планетные возмущения могут вывести ее из этой плоскости на такую орбиту, какие обычно наблюдаются в наше время.
Хороший пример кометы, захваченной планетами, демонстрирует нам комета Галлея. История ее открытия восходит к Ньютону, который показал, как можно вычислить орбиту кометы, если удалось измерить ее положение на небе в течение нескольких ночей. Используя этот метод, Эдмунд Галлей занялся вычислением орбит тех комет, которые были открыты в предшествовавшие столетия. Особенно внимательно он отнесся к кометам 1531,1607 и 1682 годов, орбиты которых выглядели практически одинаковыми. В 1705 году он пришел к выводу, что это одна и та же комета, которая с промежутком в 76 лет приближается к Солнцу по вытянутой орбите. Кроме того, оказалось, что практически по той же орбите двигались и кометы 1305,1380 и 1456 годов. Поэтому Галлей предсказал, что эта комета вновь появится в 1758 году (рис. 11.4).
Рис. 11.4. Орбита Большой кометы 1680 года была очень вытянутым эллипсом, как видно по иллюстрации из «Начал» Ньютона.
Когда предсказанный момент возвращения кометы был близок, французский астроном Алексис Клод Клеро (1713–1765) сообразил, что планетные возмущения могли настолько сильно изменить орбиту кометы, что она может не вернуться к предсказанному времени. Клеро опасался, что комета вернется раньше, чем он закончит свои расчеты, но ему повезло. Законченные осенью 1758 года, его вычисления показали, что комета станет заметной позже предсказанного срока более чем на год и к наиболее близкой к Солнцу точке орбиты подойдет только в марте следующего года. Действительно, комету обнаружили в конце 1758 года, и к Солнцу она приблизилась к моменту, указанному Клеро. Успешное предсказание Галлея, дополненное вычислениями Клеро, было воспринято как триумф теории Ньютона.
Комету назвали именем Галлея, и все ее последующие возвращения в окрестности Солнца — в 1835,1910 и 1986 годах — вызывали всеобщий интерес. За прошедшие 200 лет методы вычисления орбит были настолько усовершенствованы, что время появления кометы в 1986 году было известно заранее с точностью 5 часов. Если бы не было еще и других сил, воздействующих на комету, то момент ее появления можно было бы вычислить точнее. Но из ядра кометы испаряются газы, образующие обширный хвост (см. рис. 11.6). Выброс газа действует как маленький реактивный двигатель и непредсказуемо влияет на движение кометы.
Интересные изменения в орбитах комет могут возникать под влиянием возмущений со стороны Юпитера. В 1770 году Шарль Мессье открыл комету, летящую почти точно к Земле и прошедшую от нас всего в 2 миллионах километров. Андерс Лексель вычислил орбиту этой кометы и обнаружил, что ее орбитальный период равен всего лишь 5,6 года. Она стала первым представителем нового класса короткопериодических комет. Но в течение следующих 10 лет эта комета не появилась, и Лексель начал искать причину. Согласно его вычислениям, в 1779 году комета прошла вблизи Юпитера, и ее орбита поменялась настолько, что она уже никогда не подойдет к Земле. Комету обнаружили на новой орбите и теперь называют кометой Лекселя.
Вероятно, Лексель был первым ученым, понявшим, насколько чувствительна задача трех тел к начальным условиям — упомянутому выше детерминистическому хаосу. Это видно из его неопубликованного комментария, написанного при вычислении орбиты кометы Лекселя. Интересно, что к концу XVIII века недетерминистическая природа Ньютоновой механики была уже известна, хотя и полностью находилась в тени детерминистических работ Д’Аламбера, Клеро и других.