Рис. 16.9. Эксперимент по рассеянию, поставленный Гансом Гейгером (1882–1945) и Эрнстом Марсденом (1889–1970). Альфа-частицы рассеиваются в золотой фольге и затем ударяются в экран, покрытый сульфидом цинка, вызывая на нем вспышки света.
Спустя несколько недель, в течение которых Резерфорд размышлял над этой загадкой, он заявил: «Теперь я знаю, что произошло в эксперименте, и, кроме того, я знаю структуру атома». Он сказал, что почти вся масса и весь положительный электрический заряд сконцентрированы в ядре атома, размер которого не более 1/10 000 размера атома. Остальная часть атома пуста, за исключением электронов с их отрицательным зарядом (рис. 16.10).
Теория Нагаока о строении атома оказалась в принципе верной. В нашей Солнечной системе основная доля массы сосредоточена в Солнце. Так же и в ядре атома сосредоточена большая часть его массы. Как Солнечная система в основном состоит из «пустого» пространства между Солнцем и планетами, так же и атом «пустой» между ядром и электронами. В атоме концентрация вещества к центру даже более сильная: в масштабе Солнечной системы размер атомного ядра не больше размера планеты. Точных данных о размере электрона пока не существует, но в этом масштабе он наверняка не больше самого мелкого астероида.
Рис. 16.10. Модель атома Резерфорда. Тяжелое ядро состоит из многих ядерных частиц, а вокруг него обращаются электроны.
Глава 17 Странности микромира
Проникнув в тайны строения вещества, мы вновь можем вернуться к свету. Как нам уже известно, в XIX веке волновая теория восторжествовала над более ранней теорией Ньютона о частицах света — корпускулах. Но для волны нужна среда, в которой может распространяться волна. Для звуковых волн нужен воздух, а в космосе нет ни звуковых волн, ни воздуха. Предполагалось, что средой для световых волн служит эфир, заполняющий космос, но эта идея лишь усложняла проблему. Важнейшим шагом вперед стала первая статья Эйнштейна, вышедшая в 1905 году, в которой он показал, что в некоторых ситуациях свет ведет себя странно: его поведение напоминает поведение частиц, которые сейчас называют фотонами.
Теория Максвелла рассматривает свет как электромагнитные колебания. Но при использовании этой теории для объяснения спектра излучения абсолютно черного тела возникли проблемы. Было известно, что излучение черного тела обладает наибольшей силой на определенной длине волны и ослабевает по обе стороны от этого максимума в спектре. Но классическая теория не могла объяснить уменьшение интенсивности на высоких частотах. Немецкий физик Макс Планк понял, как можно объяснить наблюдаемый спектр черного тела: нужно предположить, что атом может излучать энергию только порциями определенного размера. Связанная с излучением энергия похожа на частицы: излучиться может одна, две, три и т. д. «частицы», но доля «частицы» излучиться не может.
Минимальная порция энергии, по предположению Планка, пропорциональна частоте волны: чем выше частота, тем больше энергии в каждой порции. Коэффициент пропорциональности называют постоянной Планка. Таким образом,
Энергия = Постоянная Планка x частота.
Поскольку частота и длина волны обратно пропорциональны друг другу, порция энергии обратно пропорциональна длине волны. Постоянная Планка очень мала, поэтому в быту мы не замечаем отдельных порций света, как не замечаем, что на вид сплошное вещество состоит из крошечных атомов.
Макс Планк был родом из Киля, но большую часть своих исследований провел в Мюнхене, где и защитил диссертацию (рис. 17.1). До этого Планк слушал лекции Кирхгофа и Гельмгольца в Берлине. Довольно неожиданно его избрали преемником Кирхгофа в Берлине. Планк исследовал излучение черного тела, и в 1900 году это привело его к важнейшему открытию. Похоже, Планк не очень высоко оценивал значение своего открытия, что энергия может излучаться только определенными порциями, называемыми квантами. Он считал, что это свойство атомов, и думал, что нет причин, мешающих электромагнитной волне переносить любое количество энергии.
Рис. 17.1. (а) Макс Планк (1858–1947) и (б) Нильс Бор (1885–1962).
Следующий шаг сделал Эйнштейн, который показал, что квантование энергии в порции связано не только с колебаниями в атоме, но и с самим электромагнитным излучением. Доказательством существования квантов света (фотонов) стало объяснение, которое Эйнштейн дал фотоэлектрическому эффекту — испусканию металлом электронов под действием падающего на него света. Это явление в 1880-х годах неожиданно открыл Генрих Герц во время экспериментов с радиоволнами. Ультрафиолетовые фотоны с высокой энергией могут выбивать электроны из металла, даже если свет имеет очень малую интенсивность. Даже один высокоэнергичный квант высокочастотного излучения способен совершить работу по «выдергиванию» электрона из металла. Но отдельные низкоэнергетичные кванты красного или инфракрасного низкочастотного излучения (даже если таких квантов много при ярком освещении) не могут выбить электрон. Грубый аналог этого явления — бросок в лицо пригоршни песка или тяжелого камня; ясно, что последствия этих ударов будут разными.
Свет состоит из своего рода частиц, как полагал Ньютон, но нельзя игнорировать и признаки волновой природы света. Наш повседневный опыт затрудняет понимание этой двойственной, «корпускулярно-волновой» природы света и вообще электромагнитного излучения. Мы по привычке связываем волны и частицы с совершенно разными явлениями. Но почему-то в масштабе атомов оба этих понятия ассоциируются с одними и теми же явлениями. Бесполезно пытаться представить себе нечто, одновременно являющееся и волной, и частицей.
Еще больше усложнил ситуацию французский герцог и физик Луи де Бройль (1892–1987), который в 1924 году предположил, что электрон является не только частицей, но и волной. В 1922 ГОДУ он защитил диссертацию под названием «Исследования в области квантовой теории». В ней была изложена его теория электронных волн. Вскоре это подтвердилось экспериментально: электроны во многих случаях ведут себя как световые волны. Например, уже описанная выше интерференция, когда волны в одной и той же фазе колебаний усиливают друг друга, а в противофазе — гасят, проявилась в экспериментах с использованием пучков электронов, падающих на кристаллы. Волны де Бройля регулярно используются в электронных микроскопах для получения более резкого изображения, чем в оптике, поскольку длина волны у электронов короче, чем у света.
Датский физик Нильс Бор применил новую квантовую концепцию к атому. Бор родился в Копенгагене, в богатой семье. В юности он был известным футболистом: вместе с братом играл в лучших национальных командах. Бор учился в Копенгагенском университете и защитил диссертацию в 1911 году. Поворотной точкой в его карьере стала работа в Англии после защиты диссертации. Вначале Бор поехал в Кембридж, но после знакомства с Резерфордом решил переехать в Манчестер. Это было как раз то время, когда Резерфорд подтвердил своими экспериментами с альфа-частицами «модель солнечной системы» для атома.
Все атомы одного элемента одинаковы, однако простая модель Солнечной системы не указывает точно, где должны располагаться электроны в этих атомах. В самой Солнечной системе нет жестких физических ограничений того, на каких расстояниях от Солнца могут располагаться планеты. Скажем, орбита Земли могла бы быть немного больше или немного меньше, чем она есть. И еще одна проблема этой модели: обращающийся по орбите электрон похож на колеблющийся заряд в антенне и поэтому должен излучать энергию с частотой своего орбитального движения. Но, в отличие от антенны радиостанции, у электрона нет внешнего источника энергии. В конце концов потеря энергии должна привести к падению электрона на ядро атома.
Именно над этими проблемами Бор размышлял в Манчестере. Только через два года он смог найти решение. Один из друзей уговорил его посмотреть на формулу спектральных линий водорода, которые Бальмер открыл на несколько десятков лет ранее. «Когда я увидел формулу, то сразу же все понял», — сказал Бор год спустя. Он предположил, что в атоме водорода электрон находится на орбите вокруг протона и их связывает электрическое притяжение. По мнению Бора, в отличие от планет Солнечной системы, у всех атомов данного элемента возможны только определенные радиусы орбит. Во всем остальном электрон может подчиняться законам механики.
Другим отклонением от стандартной физики было требование Бора, чтобы электрон, двигаясь по разрешенной орбите, не излучал. Это противоречит теории электромагнитного излучения. Но Бор связал излучение с другим явлением — с изменением орбиты электрона. Каждая круговая орбита электрона обладает определенной энергией, которая тем больше, чем дальше от протона находится эта орбита. Электрон может перепрыгнуть с верхней (то есть более далекой) орбиты на нижнюю, излучив при этом фотон, энергия которого соответствует разности энергий этих двух орбит. И наоборот, электрон может захватить пролетающий мимо фотон с энергией, необходимой для его перехода на более высокую орбиту.
А поскольку разрешены орбиты только с определенной энергией, то между ними возможны только определенные разности энергий и соответствующие им фотоны. Вспомните ступеньки лестницы: вы не сможете стоять на или перепрыгнуть через половину ступени, вы можете шагать только через целое число ступеней. Так как вели-чина энергии фотона связана с его длиной волны, то лишь определенные длины волн могут присутствовать в излучении атома воден рода. Формула Бальмера связывает длины волн с целыми числами. Бор понял, что это номера орбит в порядке увеличения их расстояния от ядра. Например, серия бальмеровских линий излучается, когда электрон в атоме водорода прыгает на орбиту номер 2 с более высоких орбит (рис. 17.2).
Рис. 17.2. Электронные орбиты Бора в атоме водорода и переходы электронов с одной орбиты на другую. Возникающие при этих переходах спектральные линии группируются в серии, соответствующие наиболее внутренней орбите. Например, бальмеровские линии возникают при переходах со второго уровня на верхние (линии поглощения) или при переходах с верхних уровней на второй (линии излучения).