Столкнувшись с объектами, не укладывающимися в существующую модель аккреции на ядро, ученые начали поиски альтернативной теории, которая могла бы объяснить работу фабрики по производству газовых гигантов. Было предложено взять за основу модель образования звезд и экстраполировать ее на газовые гиганты.
На изображениях дисковых галактик, похожих на наш Млечный Путь, видны ослепительные множества спиральных рукавов. Обычно спирали — это волны плотности, которые относятся к тому же типу, что и звуковые волны. Спиральные рукава могут появляться, когда собственная гравитация газа достаточно сильна, чтобы разорвать однородную структуру газового диска.
Этот эффект называют неустойчивостью диска — немного пафосно, учитывая, что термин означает процесс разрушения диска гравитацией. В создаваемом им спиральном рукаве собираются облака молекулярного газа, образуя плотные участки, в которых рождаются звезды.
Альтернативный вариант объяснения процесса формирования газовых гигантов исходит из того, что нечто похожее может происходить и в протопланетном диске. В окружающем звезду газовом диске образуются спиральные рукава, газ сжимается и падает непосредственно в центр планеты-гиганта. В отличие от куда меньших плотностей, которыми обычно характеризуется звездообразующее молекулярное облако, плотности в протопланетном диске потенциально могут подниматься до уровня, достаточного для формирования небольшого объекта размером с планету.
Этой идеей трудно не соблазниться, ведь она позволяет аккуратно обойти все другие проблемы, с которыми мы пытались разобраться до сих пор. Раз не нужно начинать со строительства твердого ядра, мы можем пренебречь механизмами слипания планетезималей и сопротивлением газа. Тогда для образования газового гиганта достаточно всего лишь тысячи лет, что намного меньше аналогичного значения в модели аккреции на диск и заведомо меньше продолжительности жизни газового протопланетного диска. Более того, в этом случае становится возможным создание планет с массой, превышающей массу Юпитера в 1–10 раз, то есть таких, как Фомальгаут b и другие экзопланетные мегамиры.
Проблема (а проблемы есть всегда!) в том, что возможность появления неустойчивостей в протопланетном диске аналогично тому, как это происходит в нашей Галактике, вызывает сомнения. Известны два основных фактора, от которых зависит, сможет ли диск стать неустойчивым, — масса и температура. Если диск слишком легкий, его гравитации недостаточно, чтобы нарушить равномерное распределение и сформировать спираль. И наоборот: если температура слишком высокая, беспорядочное движение газа может быстро сгладить волну сжатия до того, как она сформирует планету. Вопрос о том, могут ли сформированные таким образом планеты выживать, также остается открытым. Образующиеся рядом планеты могут объединяться в более крупные объекты либо разбить друг друга на части.
Модели протопланетного диска, окружающего звезду, аналогичную нашему Солнцу, показывают, что на расстоянии менее 40 а.е. вероятность возникновения неустойчивости крайне мала. Однако на ранних этапах существования диска, когда его масса больше, он может быть фрагментирован на расстоянии свыше 100 а.е., что полностью соответствует расположению Фомальгаута b. Все обнаруженные SEEDS планеты находятся на границе между областью аккреции на ядро и областью, где в диске может появляться неустойчивость. Поэтому можно считать, что механизм их формирования понятен. Однако, какой метод нам следует применить, до сих пор непонятно.
Образовавшаяся в результате неустойчивости диска газовая планета первоначально не имеет твердого ядра. Она может получить его, захватывая планетезимали, которые медленно падают в ее центр. Хотя наши газовые гиганты находятся слишком близко к Солнцу, чтобы неустойчивость диска могла быть причиной их формирования, нам известно о планете размером с Юпитер, образовавшейся посредством этого механизма. Масса ее ядра составляет приблизительно 6 масс Земли, то есть укладывается в предполагаемый диапазон значений массы твердого ядра Юпитера.
Какая же из двух теорий верна — теория аккреции на ядро или теория неустойчивости диска? А может быть, они обе соответствуют реальности? Единственный веский аргумент, мешающий признать, что оба механизма имели место, лежит в плоскости эстетики: два разных метода формирования газовых гигантов — это просто некрасиво. Однако ни одна из этих двух моделей по отдельности не способна объяснить происхождение и газовых гигантов в нашей Солнечной системе, и газовых гигантов вокруг других звезд. В качестве компромисса можно рассматривать их как взаимодополняющие: в результате неустойчивости диска газ сжимается в спиральные волны, которые при определенных условиях сжимаются в планеты. Если коллапс не происходит, неустойчивость диска продолжает способствовать аккреции на ядро, тогда как аккумуляция газа обеспечивает увеличение скорости образования атмосферы вокруг твердого ядра планеты.
У нас есть планеты, в которых можно узнать миры, существующие в Солнечной системе. Четыре из них сформировались быстрее остальных, сгребая планетезимали и небольшие зародыши планет, попадавшие в их непрерывно расширяющиеся гравитационные поля. Набрав массу, каменистые и ледяные ядра оказались в объятьях громадных атмосфер, искупавших их в газе. Вблизи от Солнца, где гравитационное влияние планет было не столь значительным из-за сильного притяжения звезды, процесс формирования протекал более спокойно. Затем, когда гравитация газовых гигантов заставила зародыши планет изменить свои орбиты, начался последний раунд столкновений. Результатом стало образование четырех планет земной группы, окруженных тонкими атмосферами. Однако ни на одной из этих планет еще не было условий для зарождения жизни.
Глава 4. Воздух и море
«Боже мой! Посмотрите на это! Это же Земля. Вот это да! Как она прекрасна!»
Эти слова произнес Уильям «Билл» Андерс на борту запущенного NASA космического корабля «Аполлон-8» во время первого пилотируемого полета к Луне. Позже Андерс так расскажет об этом историку освоения космоса Эндрю Чайкину: «Мы проделали весь этот путь, чтобы открыть Луну. Но на самом деле мы открыли Землю». Сделанная им фотография восхода Земли не была предусмотрена программой полета, но это не помешало ей стать одной из самых культовых фотографий в истории.
В конце 1968 г. Центральное разведывательное агентство (ЦРУ) США получило доказательства того, что в СССР было все готово для отправки двух космонавтов на орбиту Луны. В случае успеха СССР не только первым отправил бы людей за пределы околоземной орбиты, но и совершил бы значительный рывок в космической гонке, целью которой была высадка человека на иной планете.
Ранее в том же году состоялся первый пилотируемый космический полет в рамках программы NASA «Аполлон». В ходе него «Аполлон-7» доставил на околоземную орбиту трех астронавтов — Уолтера Ширру, Донна Айзли и Уолтера Каннингема, которые за 11 суток совершили 163 оборота вокруг планеты. Несмотря на появление у членов экипажа симптомов простуды, включая заложенность носа, с которой было непросто справиться в условиях низкой гравитации, программа полета была выполнена. После этого был спешно составлен план полета для «Аполлона-8», но тогда Америка еще не была готова к исторической высадке на Луну, которая состоялась позже, в 1969 г., когда астронавты Нил Армстронг и Баз Олдрин ступили на поверхность Луны.
У NASA были все основания опасаться, что американцы проиграют гонку. Несмотря на отсутствие точных данных о состоянии советской космической программы, было известно, что в сентябре того же года запущенный русскими космический аппарат с парой черепах облетел вокруг Луны и вернулся на Землю. Так что риск того, что СССР достигнет цели быстрее США, был вполне реальным.
Поэтому NASA выступило со смелым предложением: отправить «Аполлон-8» к Луне, чтобы корабль совершил пилотируемый облет нашего естественного спутника и вернулся на Землю. Это был рискованный шаг, поскольку для доставки «Аполлона-8» предполагалось использовать ракету «Сатурн-5», беспилотные запуски которой до того сопровождались серьезными проблемами, связанными с вибрацией. Однако считалось, что неполадки были устранены, да и времени на раздумья не оставалось. Накануне убийства президент Джон Ф. Кеннеди поручился, что Америка обойдет СССР в гонке за высадку на Луну. Второе место было равносильно последнему.
В канун Рождества в тот год астронавты Фрэнк Борман, Джеймс Ловелл и Билл Андерс стали первыми людьми, увидевшими обратную сторону Луны собственными глазами. Но в центре их внимания оказался вовсе не испещренный кратерами лунный ландшафт.
Во время облета Луны взорам астронавтов предстал рождественский бело-голубой узор, медленно выраставший на фоне пустынного горизонта спутника. Это была Земля, поднимавшаяся над лунной поверхностью. Снимок восхода Земли Андерса стал, по словам покойного мастера пейзажной фотографии Галена Роуэлла, «самым важным снимком окружающей нас среды за всю историю фотографии». На нем было не просто бледно-голубое пятно — это было наше пятно.
Вторая атмосфера
Если бы Андерс сделал свой снимок Земли около 4 млрд лет назад, перед ним бы предстало адское зрелище. Изъеденная жаром, сопровождавшим ее бурное рождение, содрогающаяся от продолжающихся столкновений с планетезималями, наша планета представляла собой сгусток расплавленных горных пород, усеянный извергающими океаны магмы вулканами. Не случайно эта первая эпоха в истории Земли получила название «гадейского периода» — в честь Гадеса (Аида), бога подземного мира в древнегреческой мифологии.
Первоначальная газовая оболочка, сформировавшаяся вокруг Земли из протопланетного диска, просуществовала недолго. Гравитационное притяжение нашей планеты было слишком слабым, чтобы удержать первую атмосферу, состоявшую преимущественно из легких элементов, таких как водород и гелий. Когда Солнце вступило в стадию Т Тельца, стадию бурного взросления, на планеты земной группы обрушились ветры и потоки излучения молодой звезды, сорвав с них газовые покровы.