Фабрика планет. Экзопланеты и поиски второй Земли — страница 19 из 67

суперземлю, обращающуюся вокруг звезды Кеплер-93. Как следует из названия звезды, наблюдение за ней велось с помощью космического телескопа «Кеплер». Цель наблюдения — поиск планет, проходящих по диску звезды. Кеплер-93 была самой яркой звездой из наблюдавшихся в телескоп, и уже очень скоро — в 2011 г. — было объявлено об обнаружении планеты, обращающейся вокруг нее по близкой орбите. При этом размер планеты был оценен удивительно точно. Период обращения планеты Кеплер-93 b составлял 4,7 дней, радиус — 1,478 радиуса Земли с погрешностью всего лишь 0,019 радиуса Земли, то есть 119 км. Таким образом, точное значение радиуса планеты Кеплер-93 b укладывалось в узкий диапазон от 1,459 до 1,497 радиуса Земли, и по этому показателю она однозначно могла быть отнесена к суперземлям.

После проведения точных измерений радиуса была предпринята попытка определить массу планеты. На звезду Кеплер-93 были направлены телескопы «Кек» на вершине спящего вулкана Мауна-Кеа на Гавайях, которые должны были зафиксировать колебания лучевой скорости. Исследователям удалось наблюдать покачивания звезды, но ее движение трудно поддавалось точному измерению. Согласно первоначальной оценке, Кеплер-93 b была в 2,6 раза тяжелее Земли. Но из-за огромной погрешности ее масса вполне могла быть равна и 4,6 массы Земли. Дальнейшие измерения помогли установить более точные рамки для определения характера движения звезды. В результате было получено новое значение массы Кеплер-93 b: 3,8 массы Земли с погрешностью плюс-минус 1,5 массы Земли. Это было уже лучше, но при массе в диапазоне 2,3–5,3 земных массы планету с радиусом 1,478 Земли можно было отнести сразу к нескольким типам. Исходя из полученного диапазона значений средней плотности 4–9 г/см3Кеплер-93 b могла быть чем угодно — хоть газовым миром, хоть землеподобной планетой с твердой поверхностью. Поэтому, несмотря на большой объем наблюдений, тип планеты Кеплер-93 b оставался загадкой.

Разгадать ее удалось спустя четыре года после публикации результатов измерения радиуса Кеплер-93 b. Дополнительная серия наблюдений за лучевой скоростью с использованием телескопа «Галилей» на Канарских островах позволила наконец-то сузить диапазон возможных значений массы планеты до 4,02 массы Земли с погрешностью всего лишь 0,68 массы Земли. Из этого следовало, что ее средняя плотность должна составлять около 6,88 г/см3, то есть Кеплер-93 b — гигантская каменная планета. Значило ли это, что все суперземли на самом деле представляют собой увеличенные версии Земли?

В начале 2014 г. астрофизик Дэвид Киппинг занялся поиском экзолун, то есть естественных спутников, обращающихся вокруг экзопланет. Задачу себе он выбрал не из легких. В Солнечной системе самая крупная луна — это спутник Юпитера Ганимед. Он в два раза массивнее нашей Луны, его масса составляет 2,5% массы Земли. Не исключено, что рядом с экзопланетами могут обнаруживаться спутники большего размера, но в любом случае их влияние на звезду будет ничтожным.

Как решить эту проблему? Например, можно попытаться отыскать следы влияния спутника не на звезду, а на планету. Спутник и планета обращаются вокруг общего центра масс точно так же, как это делают планета и звезда. Это вызывает колебания планеты при движении по орбите вокруг звезды. Из-за колебаний временной промежуток между прохождениями планеты по диску звезды может слегка отличаться. Чтобы наглядно представить себе эту ситуацию, воспользуемся аналогией со спортсменом, который бежит по дорожке вокруг стадиона, держа за руку маленького ребенка. Когда ребенок устремляется вперед, бегун немного ускоряется. И наоборот — когда ребенок тянет спортсмена назад, бежать становится труднее, и скорость снижается. В результате время прохождения круга оказывается разным. Таким образом, изменение количества времени, которое требуется планете, чтобы в очередной раз появиться перед звездой, может служить надежным доказательством существования рядом с ней невидимого спутника.

Этот метод называют анализом изменения моментов прохождений, сокращенно — TTV (transit timing variations). В 2014 г. команда Киппинга опубликовала данные наблюдений за прохождениями восьми планет с целью выявления незначительных изменений в периодичности их появления перед звездами. К радости исследователей, в одном случае им удалось зафиксировать изменение времени наступления транзита. Однако дело было не в спутнике.

Объектом наблюдения была планета, движущаяся по орбите вокруг холодной звезды, известной под именем Кеплер-138. До этого с помощью космического телескопа «Кеплер» рядом с этой звездой уже было найдено три планеты. Все они отличались очень маленькими радиусами, составляющими 0,4–1,6 радиуса Земли, и обращались по близким к звезде орбитам с периодом не больше месяца. Колебавшаяся планета оказалась самой дальней в системе. Она получила условное обозначение Кеплер-138 d. Но ее колебания были вызваны не предполагаемым спутником, а разгоном и торможением под влиянием соседней средней планеты — Кеплер-138 c.

Несмотря на некоторое разочарование, связанное с тем, что первый экзоспутник найти все-таки не удалось, сам по себе полученный результат заслуживал включения в книгу рекордов. Подобно колебаниям звезды, изменения времени наступления транзита могут служить своего рода весами, с помощью которых можно измерить массу планеты. Кеплер-138 d стала самой легкой планетой, у которой удалось измерить и размер, и массу[9]. Предыдущий рекорд принадлежал каменистой планете Кеплер-78 b, которая оказалась на 70% тяжелее Земли. Масса Кеплер-138 d совпала с массой Земли.

Учитывая близость полученной массы к массе планеты, являющейся нашим домом, определение типа Кеплер-138 d не должно было вызывать никаких затруднений. Это должен был быть каменистый землеподобный мир — слишком горячий, чтобы содержать воду в жидкой форме, но обладающий твердой оболочкой и тонкой атмосферой. Однако радиус Кеплер-138 d был почти на 60% больше радиуса Земли, а значит, плотность ее должна была быть в 4 раза ниже плотности нашей планеты, превышая плотность воды всего лишь на 30%. Это был не каменистый мир, а очень маленький нептун.

Проведенные в 2015 г. дополнительные измерения позволили уточнить значения массы и радиуса Кеплер-138 d: масса была скорректирована в сторону уменьшения — до 0,64 массы Земли, а новое значение радиуса оказалось на 20% больше радиуса Земли. При этом у планеты по-прежнему была очень низкая плотность, равная 2,1 г/см3, и толстая атмосфера.

В интервью средствам массовой информации Киппинг отмечал: «Даже если масса этой планеты равна массе Земли, она совершенно не похожа на Землю. Это доказывает, что невозможно провести четкую границу между каменистыми мирами вроде Земли и более “пышными” планетами вроде водных миров или газовых гигантов».

Получается, что наиболее часто встречающийся тип планет похож на коллекцию шариков из разных минералов: размер один, а вот внешний вид и строение — совершенно разные.

Разнородность суперземель захватила умы астрономов. После того, как наблюдения за Кеплер-138 d и Кеплер-93 b показали, что четкой границы между массивными земплеподобными и газовыми мирами нет, встал вопрос о возможности хотя бы приблизительно обозначить рубеж между двумя типами планет.

В 2014 г. были доступны данные измерения массы и радиуса примерно 70 суперземель. Исходя из эмпирических данных о средней плотности этих планет можно было сделать вывод о том, что при радиусе более 1,5 радиуса Земли планета обычно имеет толстую атмосферу мини-нептуна.

При этом обнаружилось множество исключений из этого правила с отклонениями как в большую, так и в меньшую сторону. Судя по размеру, Кеплер-138 d должна была быть каменной планетой, но на самом деле она — газовая. С другой стороны, планета с условным обозначением BD+20594 b, как было установлено, имеет радиус, равный 2,2 радиуса Земли, но ее плотность достаточно высока для того, чтобы охарактеризовать ее как состоящую преимущественно из твердых пород. Тем не менее в тех случаях, когда был известен только размер планеты, правило о 1,5 радиуса Земли позволяло сделать первые предварительные выводы.

Теперь нужно было как-то объяснить, почему столь разнородные планеты расположены так близко к своим звездам.

Хтонические планеты

Итак, было найдено два класса планет, обращающихся в непосредственной близи от своих звезд: горячие юпитеры и горячие суперземли. Это заставило астрономов задуматься о наличии связи между ними. Может быть, суперземли — всего лишь горячие юпитеры, которые каким-то образом растеряли свои гигантские атмосферы?

Доказательства в пользу этой теории появились осенью 2003 г., когда впервые была обнаружена планета в момент ее прохождения перед звездой — HD 209458 b. Это был горячий юпитер, за которым, как за гигантской кометой, шлейфом тянулась атмосфера. Учитывая, что период обращения планеты составлял всего 3,5 дня, окутывающие планету-гиганта газы улетучивались из-за близости к звезде. В случае потери значительной части своей атмосферы планета могла бы сжаться до размера суперземли. В результате из нее мог бы получиться либо мини-нептун, либо твердое ядро без оболочки. По аналогии с неприкрытыми плотью скелетами существ из мифологической преисподней эти гипотетические миры стали называть хтоническими планетами.

Несмотря на всю свою мрачную притягательность, идея о существовании утративших атмосферу хтонических планет сразу подверглась критике. Атмосферы горячих юпитеров настолько огромны, что времени жизни звезды не хватило бы для образования суперземли даже при таком темпе улетучивания газов из атмосферы, который наблюдался у HD 209458 b. Однако улетучивание было не единственным фактором потери атмосферы.

При перемещении горячего юпитера с окраины планетной системы к центру притяжение звезды усиливается. Это приводит к уменьшению сферы Хилла, то есть зона действия собственной гравитации планеты сужается. Поначалу ничего серьезного не происходит, так как атмосфера планеты сжимается, существенно уменьшаясь в размерах. Но стоит планете подойти вплотную к звезде, ее атмосфера попадает во власть звездной гравитации, под действием которой газ вытягивается из атмосферы планеты. В результате, как и в случае с улетучиванием, может образоваться хтоническая планета, представляющая собой небольшой газовый мир или ядро без оболочки.