Фабрика планет. Экзопланеты и поиски второй Земли — страница 30 из 67

Еще более странным было то, что пульсар замедлялся недостаточно быстро. Согласно моделям изменения скорости пульсара, молодые пульсары должны терять скорость стремительно, а такой заводной волчок, как миллисекундный пульсар, должен затухать и того быстрее — всего лишь за несколько лет. Измерения скорости замедления пульсара показали, что она была намного ниже ожидаемой, а возраст объекта составляет 230 млн лет. То есть он был намного старше всех известных на тот момент пульсаров. Как мог пульсар, испускающий энергию в космос, быть одновременно и самым быстрым и самым старым? Как выяснилось впоследствии, все дело было в том, что он поглотил своего компаньона.

История миллисекундных пульсаров начинается с пары звезд, обращающихся вокруг общего центра масс в составе двойной системы. Удерживаемые вместе взаимным тяготением, эти звезды не похожи друг на друга: одна из них намного массивнее другой. Большой размер не прибавляет здоровья звезде, так как дополнительная масса ускоряет процесс сжигания запасов ядерного топлива. Поэтому более массивный из двух компонентов первым достигает конца обычного для звезд жизненного цикла и взрывается как сверхновая. Когда совсем рядом происходит взрыв такой колоссальной мощности, меньшая звезда рискует быть разорванной на кусочки. Но если ей все-таки удается выжить, она оказывается в паре с нейтронной звездой.

Несмотря на крошечный размер, нейтронная звезда остается невероятно тяжелой. Поэтому вторая звезда в системе продолжает испытывать на себе ее гравитационное притяжение, и обе они по-прежнему обращаются вокруг общего центра масс. Если магнитные полюсы нейтронной звезды оказываются направлены в сторону Земли, пучки ее радиоизлучения попадают по нашей планете и регистрируются как пульсар. Со временем пульсар начинает замедляться. Приблизительно за 100 000 лет радиосигнал пульсара ослабевает настолько, что обнаружить его уже невозможно. И пульсар замолкает. Однако масса пульсара при замедлении не меняется, так что ее звезда-компаньон продолжает движение по той же орбите. Но теперь уже она сама также приближается к концу своего жизненного пути.

Вокруг каждой из звезд есть участок пространства, в котором ее притяжение преобладает над притяжением звезды-компаньона — полость Роша. По сути, это понятие, схожее с понятием сферы Хилла, — для тех случаев, когда массы рассматриваемых объектов сопоставимы. По форме полости Роша похожи на слезинки, которые сходятся в одной точке своими узкими концами, а не на сферы вокруг звезд. В точке схождения гравитационные силы двух звезд уравновешивают друг друга подобно перемычке между двумя горными долинами. Достаточно сделать один шаг по направлению к одной из звезд — и ее гравитация притянет вас к ней. Сдвиньтесь в обратном направлении — и теперь уже ее компаньон затащит вас к себе.

Когда в меньшей из двух звезд заканчивается водород, она раздувается и превращается в красный гигант. Радиус звезды становится настолько большим, что она выходит за пределы своей полости Роша и втягивается в область притяжения нейтронной звезды. Этот выход за границы повторяет механизм образования хтонических суперземель из горячих юпитеров, описанный в шестой главе.

Как только внешние слои красного гиганта наваливаются на нейтронную звезду, она получает толчок, который приводит к еще большему ускорению ее вращения. Под влиянием дальнейшего притока вещества красного гиганта-компаньона скорость вращения нейтронной звезды вырастает до невероятных значений, измеряемых миллисекундами. Соприкасаясь с поверхностью нейтронной звезды, вещество нагревается до колоссальных температур, достигающих 10 млн градусов. Такое фантастически горячее вещество испускает не инфракрасное, а более высокоэнергетическое рентгеновское излучение. Для обозначения источников такого излучения, фиксируемого на Земле, используют промежуточный термин маломассивные рентгеновские двойные системы.

В конце концов нейтронная звезда полностью вытягивает внешние слои красного гиганта, который превращается в белый карлик, обращающийся вокруг миллисекундного пульсара. Чтобы обратить внимание на главную особенность миллисекундных пульсаров, а именно увеличение скорости вращения в результате воздействия внешнего объекта, их называют раскрученными пульсарами. Точность, с которой они испускают импульсы, еще выше, чем у обычных пульсаров. Степень точности настолько велика, что на нее может повлиять даже крошечный объект. И последствия этого влияния можно наблюдать.

Самая первая экзопланета

51 Пегаса b часто называют первой экзопланетой, открытой астрономами. В действительности этот горячий юпитер был первой планетой, найденной в системе с солнцеподобной звездой. Статус самой первой экзопланеты, обнаруженной людьми, делят два мира, обращающиеся вокруг миллисекундного пульсара PSR B1257+12.

История открытия PSR B1257+12 необычна тем, что началась она не с ввода в строй новейшего телескопа, а с поломки старого. В 1990 г. возникла необходимость провести ремонтные работы на радиотелескопе «Аресибо» — том самом, с помощью которого был найден первый миллисекундный пульсар. Незадолго до того в его конструкции были обнаружены трещины. Брать на себя риск эксплуатации неисправного телескопа никто не собирался, особенно после одного инцидента: за несколько лет до того из-за повреждения элементов конструкции произошло обрушение 90-метрового радиотелескопа в американском городке Грин-Бэнк. «Аресибо» мог продолжать работу и во время ремонта. Единственное ограничение было связано с тем, что он должен был оставаться в одном положении, то есть он не мог поворачиваться вслед за объектом, отслеживаемым в ночном небе. В результате перечень проектов, в которых он мог использоваться, существенно сузился, и спрос на услуги телескопа сильно упал. Но нашелся человек, который понял, как извлечь максимальную пользу из этого вынужденного простоя. Им стал работавший на «Аресибо» польский астроном Александр Вольщан. Он планировал провести обзорную съемку неба с целью обнаружения миллисекундных пульсаров. Для реализации этого плана потребовалось бы в течение месяца использовать почти треть мощности самого большого на тот момент телескопа в мире. В обычных обстоятельствах его заявку просто бы отклонили. Однако, учитывая падение спроса на телескоп и то, что Вольщан уже работал с ним, ему выделили время.

Так Вольщан обнаружил два новых пульсара. Первый был частью двойной системы с еще одной нейтронной звездой. Поначалу именно он показался исследователю более интересным, но затем Вольщан обратил внимание на аномальный период вращения второго пульсара.

Обнаруженный Вольщаном пульсар PSR B1257+12 стал пятым известным нам миллисекундным пульсаром. Его период вращения составлял 6,2 миллисекунды, что соответствовало 161 оборотам в секунду. Но когда Вольщан пытался спрогнозировать частоту, с которой этот источник радиоизлучения должен быть виден на Земле, у него ничего не получалось. Это было особенно странно, учитывая, что он имел дело с миллисекундным пульсаром. Раскручиваясь при взаимодействии со своим компаньоном, такие старые нейтронные звезды подвержены внешним воздействиям в меньшей степени, чем их более молодые или медленные собратья. Возможно, эта аномалия объяснялась орбитой пульсара. При вращении двух звезд в одной системе расстояние до Земли будет слегка колебаться, а вместе с ним — и частота регистрируемых импульсов. Однако наблюдение показывало, что никакого компаньона рядом с пульсаром не было (что само по себе было странно для раскрученного пульсара), а колебания частоты сигнала от него казались слишком незначительными, чтобы их причиной могло быть взаимодействие с соседом размером со звезду. Гипотеза о наличии менее крупного компаньона также не имела никакого смысла, так как в фазе красного гиганта в эволюции пульсара такой объект просто бы испарился или был бы выброшен из области действия гравитации пульсара вследствие уменьшения массы при взрыве сверхновой.

Вольщан предположил, что проблема заключалась в неточном определении местоположения пульсара. Если эти данные были неверны, то и результаты расчетов расстояния до Земли также должны были быть неправильными. Наличие такой ошибки привело бы к изменению ожидаемого времени поступления радиоимпульсов и тем самым свело на нет все расчеты Вольщана. Чтобы получить более точные данные, Вольщан обратился за помощью к Дейлу Фрейлу из Национальной радиоастрономической обсерватории США, работавшему на телескопе с изобретательным названием «Сверхбольшая антенная система» (Very Large Array, сокращенно — VLA). Телескоп VLA находится в штате Нью-Мексико и состоит из 27 отдельных параболических антенн, образующих в плане гигантскую букву Y. Благодаря обобщению данных с разных антенн обеспечивается исключительно высокая точность измерений.

Пока Фрейл занимался уточнением местоположения пульсара, мировые СМИ взорвала сенсационная новость об обнаружении планеты рядом с еще одним пульсаром. 26 июля 1991 г. вышел очередной выпуск журнала Nature, на обложке которого красовалось сообщение об открытии «первой планеты за пределами нашей Солнечной системы».

Открыли новую планету британские астрономы Эндрю Лин и Мэттью Бейлс, которым помогал аспирант Сетнем Шемар. Их находка располагалась рядом с пульсаром PSR B1829–10, относившимся к классу обычных пульсаров, на расстоянии 30 000 световых лет в созвездии Щит. Судя по колебаниям излучаемого пульсаром сигнала, планета-компаньон имела массу, равную 10 массам Земли, и период обращения около 6 месяцев.

Вольщан воспринял эту новость со смешанными чувствами. Теперь, когда возможность существования планет вокруг пульсаров была практически доказана другими, у него возникло ощущение, что он только что упустил свой шанс войти в историю. Не были ли планеты также и причиной странного движения PSR B1257+12? Он считал это объяснение одним из возможных, но к тому моменту не располагал достаточными данными, чтобы заявить об этом.

Новость об открытии экзопланеты дошла и до Фрейла. Он отправил Вольщану по факсу новые уточненные данные о координатах их миллесекундного пульсара, полученные при наблюдении с помощью VLA, сопроводив их шутливым напутствием: «Только не вздумай найти там какие-нибудь планеты!» Скорректировав исходную модель с учетом новых данных, Вольщан все-таки был вынужден сообщить коллеге в ответном письме о том, что они только что нашли две. Масса каждой из планет составляет приблизительно 4 массы Земли. Они обращаются вокруг пульсара чуть ближе и чуть дальше, чем Меркурий вокруг Солнца, по слегка вытянутым эллиптическим орбитам с периодами 67 и 98 суток. Учтя воздействие этих планет, Вольщан получил полноценную модель, в которую идеально укладывалась частота излучения пульсара.