[35], в наблюдениях за этой планетой начнется новый этап.
Сколько времени потребуется нам, чтобы добраться до Проксимы Центавра b, ближайшей к нам экзопланеты? Хотя 4 световых года кажутся чем-то незначительным на фоне 500 световых лет, отделяющих нас от Кеплер-186 f, в действительности один световой год соответствует умопомрачительно большому расстоянию. Самое далекое путешествие человека в космос — это полет вокруг Луны. В ходе него люди преодолели крохотное расстояние, равное 0,00000004 светового года. Если бы «Вояджер-1», который движется с максимальной для космических аппаратов скоростью и находится дальше, чем любой другой созданный людьми объект, летел в соответствующем направлении, ему все равно потребовалось бы 75 000 лет, чтобы добраться до Проксимы Центавра.
Есть и другие идеи, связанные с запуском миниатюрных высокоскоростных зондов, но на данном этапе мы еще очень далеки от их реализации. Пока при изучении ближайших звезд нам приходится довольствоваться тем, что мы можем увидеть с помощью телескопа.
Глава 14. Инопланетные пейзажи
Среди тысяч открытых миров есть всего один, на котором точно может существовать жизнь, — Земля. Поэтому поиск пригодных для жизни планет во многом свелся к поиску миров, которые походили бы на наш собственный.
Действительно, распознать такую же обитаемую среду, как на Земле, проще всего. Но это вовсе не означает, что в других условиях жизнь существовать не может. Более того, вполне может оказаться, что Земля — еще и не самое лучшее место для жизни. Каким же должен быть инопланетный ландшафт, чтобы он идеально подходил для завтрака Златовласки?
Миры, покрытые водой
Когда с помощью транзитного метода была найдена первая планета в зоне умеренных температур, появилась надежда, что ее поверхность может быть заселена жизнью. Кеплер-22 b оказалась слишком большой для планеты с твердой поверхностью и слишком маленькой для газового гиганта. Могла ли она быть промежуточным миром, поверхность которого целиком покрывает глубокий океан? Поскольку на Земле жизнь присутствует везде, где есть вода, эта гипотеза заслуживала внимания.
Первый вопрос, возникающий в связи с ней: может ли такой покрытый водой мир существовать на самом деле? Без измерения массы, на основе которой можно рассчитать среднюю плотность, любые суждения о природе Кеплер-22 b оставались ничем не подкрепленными догадками. Одного лишь размера было недостаточно, чтобы выделить новый тип планет, отличающихся как от мининептунов, так и от гигантских миров земного типа. Однако к тому времени уже были получены убедительные доказательства существования планет-океанов.
В 2009 г. на расстоянии 42 световых лет от нас в созвездии Змееносец в момент прохождения по диску красного карлика была открыта новая планета. Как показывают расчеты, даже без учета атмосферы температура ее поверхности существенно выше 100 °C, то есть она точно находится за пределами зоны умеренных температур. Однако благодаря короткой орбите с периодом обращения всего 1,6 суток влияние планеты на ее звезду проявляется достаточно сильно, чтобы можно было рассчитать ее массу путем измерения изменения лучевой скорости. В совокупности с данными, полученными при наблюдении прохождения, мы может определить ее среднюю плотность.
Речь идет о планете Глизе 1214 b. При радиусе 2,7 радиуса Земли и массе, равной 6,6 массы нашей планеты, ее плотность составляет 1,87 г/см3. Таким образом, она занимает промежуточное положение между планетами земного типа и газовыми нептунами. Согласно одной гипотезе, планета с такой плотностью должна на четверть состоять из горных пород и на три четвертых из воды, а также быть окружена водородно-гелиевой атмосферой. Для сравнения: на Земле доля воды в общей массе планеты ничтожно мала — всего лишь 0,1%. Однако из-за высоких температур огромный объем воды на Глизе 1214 b не образует жидкий океан. Этот мир окутан жидкоподобным газом сверхкритической жидкости[36].
Для проверки гипотезы о водной природе Глизе 1214 b с помощью телескопа «Хаббл» была изучена атмосфера планеты при ее прохождении. К сожалению, проверку она не прошла. В полученных данных не было даже намека на признаки поглощения света звезды молекулами воды. Самое очевидное объяснение столь невнятного результата заключается в том, что атмосферу планеты закрывают облака, которые делают невозможным ее изучение с помощью телескопа. И все же, несмотря на отсутствие подтверждающих данных, плотность Глизе 1214 b с высокой долей вероятности указывает на преобладание воды в ее составе. С ее открытием существование покрытых водой миров стало научным (ну или почти научным) фактом.
Чтобы заполучить так много воды, Глизе 1214 b должна была формироваться далеко от звезды. Планета вполне могла бы аккумулировать столь значительный объем воды в замороженном виде в пределах протопланетного диска за снеговой линией. Затем, в результате взаимодействия с газовым диском, богатый льдом мир мигрировал ближе к звезде. Если бы он остановился в зоне умеренных температур, мы бы имели дело с миром, покрытым океаном из воды в жидкой фазе.
Покрытые водой миры, возможно, не так уж и редки. Глизе 1214 b и Кеплер-22 b — суперземли, то есть относятся к самому многочисленному из известных нам классов экзопланет. Эта группа планет, превышающих размером нашу в несколько раз, может включать два очень разных типа покрытых водой миров.
Глизе 1214 b — пример мира, покрытого глубоким океаном. Занимая промежуточное положение, ее плотность указывает на громадную долю воды в составе планеты. Ее твердое ядро должно быть скрыто толщей воды глубиной в десятки тысяч километров. Впрочем, вода может целиком покрывать поверхность планеты, даже когда она не преобладает в ее составе. В условиях более мощной гравитации поверхность каменистой планеты большого размера должна иметь плоский рельеф. Сжимаемый силой притяжения, ландшафт такого мира может сильно отличаться от привычного нам, изрезанного горами и холмами, образуя сплошную равнину, которая может легко превратиться в океанское дно даже при небольшом объеме воды. Эти два типа планет-океанов различаются так же, как залитая водой глубокая суповая тарелка отличается от залитой водой тарелки плоской. Вода закрывает поверхность обеих тарелок, но в одной из них жидкости намного больше, чем в другой. На каменистой планете массой 10 масс Земли может вовсе не быть континентов, даже если воды на ней будет в 10 раз меньше количества воды на нашей планете. Таким образом, более крупная версия Земли, скорее всего, будет покрыта водой.
На Земле жизнь существует повсюду, где есть вода. Однако может ли полноценная экосистема сформироваться на планете без суши? Если наличие океана, целиком покрывающего поверхность, делает планету непригодной для жизни, это накладывает ограничения на размер каменистой планеты, на которой может развиться жизнь.
На планете, покрытой глубоким океаном, растениям, которые живут за счет фотосинтеза, придется удерживаться на поверхности без какой-либо опоры. Стебли и корни не способны дотянуться с освещаемой звездой поверхности до дна на глубине более 10 000 км. Плавучим растениям, таким как водоросли, придется развиваться рядом с существами, которые могут летать или плавать. Конечно, на земле есть примеры таких форм жизни, а также организмов-хозяев, которые могут обходиться без солнечного света. Смогли бы формы жизни, обитающие в океанах Земли, успешно существовать на планете, целиком покрытой глубоким океаном?
Хотя на воду приходится лишь 0,1% массы Земли, наши океаны так глубоки, что свет не может пробиться сквозь толщу воды и достичь дна. Его заменяют гидротермальные выходы — трещины в коре, через которые вырываются струи горячей жидкости. Несмотря на высокую температуру, существенно превышающую 100 °C, эти гигантские столбы вещества сохраняют жидкую форму. Вокруг гидротермальных выходов формируются целые экосистемы, которые отлично обходятся без солнечного света. Такой источник энергии мог бы поддерживать жизнь на блуждающей планете, не имеющей доступа к свету звезды. К сожалению, любые попытки экстраполировать эту гипотезу на мир, покрытый глубоким океаном, обречены на провал.
Стоит только представить себе, что доля воды в массе планеты составляет не 0,1%, а более 50%, и дно океана становится совершенно другим местом. На дне резервуара такого колоссального объема давление достигает значений, при которых вода сжимается в толстые слои льда. Таким образом, ядро из силикатных пород оказывается отделено от водной стихии ледяным барьером толщиной в тысячи километров. Под таким слоем льда формирование гидротермальных выходов невозможно, а значит, вокруг них не образуются экосистемы.
Кроме того, отсутствие суши делает невозможным круговорот углерода. В главе 12 мы говорили о нем как о термостате нашей планеты, обеспечивающим регулировку температуры на поверхности за счет изменения количества углекислого газа в атмосфере. При увеличении температуры на планете в результате реакций с поверхностными горными породами из атмосферы удаляется большее количество углекислого газа. При падении температуры эти реакции замедляются, уровень углекислого газа в атмосфере повышается, а вместе с ним — и количество улавливаемого тепла. В отсутствие горных пород на поверхности этот механизм температурной регуляции не может полноценно функционировать.
А что, если необходимые реакции протекали бы на поверхности океана? Моря на Земле поглотили в 10 раз больше углекислого газа, чем содержится в воздухе. На планете, целиком покрытой океаном, произошло бы то же самое, но такой механизм иначе как «дьвольским термостатом» не назовешь. Наиболее эффективно процесс поглощения углекислого газа морями происходит тогда, когда температура падает. Моря при повышении температуры вытягивают из атмосферы меньше углекислого газа, из-за чего в ней остается большее количество тепла. Когда происходит обратное, и планета охлаждается, благодаря морям из атмосферы удаляется больше углекислого газа и больше тепла покидает планету. Поэтому океан, покрывающий всю поверхность планеты, будет не препятствовать процессу изменения температуры планеты, а ускорять его.