Фабрика планет. Экзопланеты и поиски второй Земли — страница 65 из 67

ты и осью вращения звезды).

Орбитальный резонанс — ситуация, при которой периоды обращения соседних планет (количество времени, за которое планета совершает полный оборот) соотносятся как целые числа. Например, одна планета может совершать два оборота за то время, которое требуется другой планете для одного. Такие орбиты отличаются очень высокой стабильностью и устойчивостью к внешним воздействиям.

Парниковый эффект — способность газов в атмосфере планеты поглощать и отражать инфракрасное излучение, обеспечивая ее нагрев.

Планета земного типа — твердотельная планета с тонкой атмосферой. В Солнечной системе — это Меркурий, Венера, Земля и Марс.

Планетезималь — твердое тело размером с астероид (от нескольких километров до нескольких сотен километров в диаметре), образовавшееся в процессе формирования планеты.

Приливный захват — движение по орбите планеты (или спутника), при котором одна и та же сторона тела всегда обращена к родительской звезде (или планете).

Приливный разогрев — тепло, выделяющееся при деформации планеты (или спутника) в результате изменения силы притяжения звезды (или планеты) при движении по вытянутой орбите.

Протопланетный диск — газово-пылевой диск, окружающий молодые звезды и служащий основой для формирования планет.

Световой год — расстояние, которое свет проходит за один год. Соответствует 63 241 а.е., или примерно 9 500 000 000 000 км.

Снеговая линия — расстояния от звезды, на котором температура опускается до значения, обеспечивающего формирование льдов в протопланетном диске. Другие названия — линия льдов, линия мороза.

Суперземля — планета радиусом 1,25–4 радиуса Земли. Такие планеты могут быть твердотельными или иметь толстые атмосферы, как у Нептуна.

Сфера Хилла — область вокруг планеты (или иного объекта), в которой ее собственная гравитация сильнее гравитации звезды. Попадая в эту область, объекты меньшего размера (такие как планетезимали) притягиваются к планете.

Транзитный метод — метод обнаружения планет по незначительному падению яркости звезды при прохождении перед ней планеты. Позволяет вычислить период обращения планеты и ее радиус.

Экзоспутник — спутник, обращающийся вокруг экзопланеты.

Экзопланета — планета, обращающаяся вокруг звезды за пределами Солнечной системы.

Эксцентриситет — элемент орбиты, характеризующий ее форму. Нулевой эксцентриситет соответствует круговой орбите.

Дополнительная литература

Простое перечисление всех научных работ, результаты которых лежат в основе представления о планетах, изложенного на страницах «Фабрики планет», потребовало бы еще одной книги такого же объема. Дабы не перегружать читателей, я попыталась отобрать исследования и обзоры, в которых содержатся основные результаты и которые вряд ли широко известны за пределами научного мира.

Предисловие. Слепцы и планеты

Открытие первой планеты, обращающейся вокруг солнцеподобной звезды — 51 Пегаса b: M. Mayor & D. Queloz 1995. A Jupiter-mass companion to a solar-type star. Nature 378:355–359.

Открытие первой планеты транзитным методом — HD 209458. Две статьи, в которых сообщалось о находке, были опубликованы в выпуске журнала за январь 2000 г., который на самом деле увидел свет в декабре 1999 г.: 1. D. Charbonneau et al. 2000. Detection of planetary transits across a Sun-like star. The Astrophysical Journal Letters 529: L45–48; 2. G. Henry et al. 2000. A transiting ‘51 Peg-like’ planet. The Astrophysical Journal Letters 529: L41–44.

Глава 2. Небывалая стройка

Исчерпывающий обзор исследований, посвященных процессу формирования планет — от пыли до планетезималей: A. Johansen et al. 2014. The multifaceted planetesimal formation process. В Protostars and Planets VI (University of Arizona Press, Tuscon, USA, 2014). Данный обзор дополняет результаты дискуссий в рамках конференции Protostars and Planets VI, с которыми можно познакомиться онлайн по адресу: www.mpia.de/homes/ppvi.

Глава 4. Воздух и море

Обзор работ Эрнста Эпика, составленный Фредом Уипплом: F. Whipple 1972. Ernst Öpik’s research on comets. Irish Astronomical Journal Supplement 10:71–76.

Глава 5. Планета, которой не может быть

Отличный источник великолепных описаний вновь открытых экзопланет — блог Шона Реймонда PlanetPlanet (planetplanet.net).

Описание модели смены галса: K. Walsh 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209.

Описание модели Ниццы: R. Gomes et al. 2005. Origin of the cataclysmic Late Heavy Bombardment period of terrestrial planets. Nature 435:466–469.

Описание модели Ниццы II: H. Levison et al. 2011. Late orbital instabilities in the outer planets induced by interaction with a selfgravitating planetesimal disk. The Astronomical Journal 142:152–162.

Планета с плотностью полистирола — WASP-17 b: D. Anderson et al. 2010. WASP-17 b: An ultra-low density planet in a probable retrograde orbit. The Astrophysical Journal 709:159–167. Открытие было описано в Wired (where Coel Hellier is quoted) 2009: Aack, no breaks! Giant new exoplanet goes the wrong way, http://bit.ly/2kuEaGc.

Глава 6. Мы — отклонение от нормы

Окончательные результаты измерения массы Кеплер-93 b были опубликованы в: C. Dressing et al. 2015. The Mass of Kepler-93b and the composition of terrestrial planets. The Astrophysical Journal 800:135–141

Результаты измерения массы Кеплер-138 d (тогда планета называлась по-другому — KOI-314c) методом анализа изменения времени наступления транзитов: D. Kipping et al. 2014. The hunt for exomoons with Kepler (HEK): IV. A search for moons around eight M dwarfs. The Astrophysical Journal 784:28–41. Пресс-релиз Гарвард-Смитсоновского центра астрофизики (включая цитату Киппинга) за 2014 г.: Newfound planet is Earth-mass but gassy, http://bit.ly/2kvR47c.

Описание эмпирически выведенного принципа, согласно которому при радиусе более 1,5 радиуса Земли планета, как правило, является мини-нептуном, а не твердотельной планетой: L. Rogers 2015. Most 1.6 Earth-radius planets are not rocky. The Astrophysical Journal 801:41–53.

Исследования, посвященные вопросу формирования суперземель из протопланетных дисков разной формы: 1. H. Schlichting 2014. Formation of close in super Earths and mini-Neptunes: required disk masses and their implications. The Astrophysical Journal Letters 795: L15–19; 2. S. Raymond & C. Cossou 2014. No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super Earths. Monthly Notices of the Royal Astronomical Society: Letters 440: L11–15.

Образование мини-нептуна в результате перетекания атмосферы горячего юпитера: F. Valsecchi, F. Rasio & J. Steffen 2014. From hot Jupiters to super Earths via Roche lobe overflow. The Astrophysical Journal Letters 793: L3–8.

Образование суперземли в результате «сгребания» материала горячим юпитером: S. Raymond, A. Mandell & S. Sigurdsson 2006. Exotic Earths: forming habitable worlds with giant planet migration. Science313:1413–1416.

Открытие Кеплер-11 с шестью планетами было описано (с цитатами, указывающими на удивление Джека Лиссауэра) NASA в 2011 г.: NASA’s Kepler Spacecraft discovers extraordinary new planetary system, http://go.nasa.gov/2kKtimo, а также на ряде других сайтов, включая Guardian 2011: NASA scientists discover planetary system, http://bit.ly/2lv7ydU.

Формирование суперземли на краю мертвой зоны: S. Chatterjee & J. Tan 2014. Inside-out planet formation. The Astrophysical Journal 780:53–64.

Компьютерное моделирование изменения направления миграции: C. Cossou et al. 2014. Hot super Earths and giant planet cores from different migration histories. Astronomy & Astrophysics 569: A56–71.

Глава 7. Вода, алмазы, лава — неведомые рецепты планетообразования

Обсуждение моделей образования планетезималей вокруг богатых углеродом звезд в работе Торренса Джонсона и Джонатана Лунина: T. Johnson et al. 2012. Planetesimal compositions in exoplanet systems. The Astrophysical Journal 757:192–202. Шутка Джонсона об «отсутствии снега за снеговой линией» и наблюдение Лунина относительно углеродных миров содержатся в сопроводительном пресс-релизе Лаборатории реактивного движения за 2013 г.: Carbon Worlds May be Waterless, Finds NASA Study, http://go.nasa.gov/2kVk0WA.

Возможные изменения в геологии твердотельных планет с разным составом: 1. C. Unterborn et al.2014. The role of carbon in extrasolar planetary geodynamics and habitability. The Astrophysical Journal793:124–123; 2. J. Bond, D. O’Brien & D. Lauretta 2010. The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. The Astrophysical Journal 715:1050–1070.

Оценка объема углерода в звезде 55 Рака: J. Teske et al. 2013. Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri. The Astrophysical Journal 778:132–140.

Возможность формирования богатых углеродом планет даже в протопланетном диске с долей C/O более 0,65: J. Moriarty, N. Madhusudhan & D. Fischer 2014. Chemistry in an evolving protoplanetary disc: Effects on terrestrial planet composition. The Astrophysical Journal 787:81–90.

Может ли 55 Рака e быть углеродным миром? N. Madhusudhan, K. Lee & O. Mousis 2012. A possible carbon-rich interior in super Earth 55 Cancri e. The Astrophysical Journal Letters 759: L40–44.

Пресс-релиз Кембриджского университета, посвященный 55 Рака e (включая слова Мадхусудана), за 2015 г.: Astronomers find first evidence of changing conditions on a super Earth, http://bit.ly/1c0gsu1.