роверить свою догадку, он нарисовал кристалл карандашом, и — о чудо! — нарисованный кристалл тоже переворачивался (рис. 4.1). Вы можете увидеть его ориентированным вверх или вниз, в зависимости от того, как ваш мозг интерпретирует изображение, хотя на сетчатке оно остается постоянным, то есть не меняется вообще. Таким образом, каждый акт восприятия, даже такой простой, как смотрение на нарисованный куб, включает некий акт суждения, выполняемый мозгом.
При вынесении этих суждений мозг исходит из того, что мир, в котором мы живем, не хаотичен и не аморфен; он обладает устойчивыми физическими свойствами. В ходе эволюции — и частично в детстве как результат обучения — эти устойчивые свойства инкорпорируются в зрительные области как определенные «допущения» или скрытые знания о мире, которые впоследствии можно использовать для устранения двусмысленностей в восприятии. Например, когда некоторое количество точек перемещаются одновременно — как пятна на леопарде, — они, скорее всего, принадлежат одному объекту. Поэтому стоит вам увидеть множество точек, движущихся вместе, ваша зрительная система делает разумный вывод, что их одновременное движение едва ли является простым совпадением, — а если это не совпадение, значит, это один объект. Его вы и видите. Неудивительно, что немецкий физик Герман фон Гельмгольц (основоположник науки о зрении) называл восприятие «бессознательным умозаключением»[39].
Взгляните на затененные круги на рисунке 4.2. Это просто плоские диски, но примерно половина из них кажутся выпуклыми и напоминают яйца, а другая половина выглядят вдавленными и напоминают углубления. Присмотревшись, вы заметите, что диски, которые сверху светлые, кажутся выпуклыми, а темные — вдавленными. Если вы перевернете страницу вверх ногами, то увидите, что «яйца» и «углубления» поменялись местами. Причина в том, что при интерпретации формы затененных изображений ваша зрительная система исходит из «встроенного» допущения о том, что солнце светит сверху. Следовательно, в реальном мире выпуклый предмет, обращенный к вам, будет получать свет сверху, а впадины — снизу. Поскольку все мы эволюционировали на планете с одним солнцем, которое обычно светит сверху, такое предположение[40] разумно. Конечно, иногда оно висит у линии горизонта, но, по статистике, солнечный свет обычно исходит сверху и, конечно, никогда снизу.
Не так давно я был приятно удивлен, обнаружив, что Чарльз Дарвин знал об этом принципе. На хвостовых перьях фазана аргус имеются серые дискообразные отметины, которые очень похожи на те, что вы видите на рисунке 4.3; однако все они затенены либо слева, либо справа, а не внизу или наверху. Дарвин предположил, что птица может использовать их как сексуальный «призыв» во время ритуала ухаживания; в самом деле, «металлические» диски на перьях можно рассматривать как птичий эквивалент ювелирных изделий. Но если так, то почему они затенены слева и справа, а не вверху и внизу? По мнению Дарвина, все дело в том, что во время ухаживания перья торчат. Он не ошибся: так оно и есть, иллюстрируя поразительную гармонию между ритуалом ухаживания и направлением солнечного света в зрительной системе птиц.
Рис. 4.2
Смесь яиц и углублений. Затененные диски идентичны, за исключением того, что половина из них сверху светлые, а половина — темные. Те, которые сверху светлые, всегда воспринимаются как выпуклые яйца, а те, которые сверху темные, — как углубления. Это связано с тем, что зрительные области в вашем мозге имеют встроенное чувство, что солнце светит сверху. В этом случае выпуклости (яйца) должны быть светлыми сверху, а углубления — светлыми внизу.
Если вы перевернете страницу вверх ногами, яйца превратятся в углубления, а углубления — в яйца.[41]
Еще более убедительные доказательства существования всех этих необычайно сложных процессов можно почерпнуть из неврологии — от пациентов с высоко селективными дефицитами зрения. Если зрение заключается в простом отображении образа на нейронном экране, то в случае нейронального повреждения логично ожидать, что человек перестанет видеть отдельные фрагменты «картинки» или всю «картинку» целиком, в зависимости от степени поражения. Однако в реальности все иначе. Чтобы понять, что на самом деле происходит в мозге таких больных и почему они вообще столкнулись с этими специфическими проблемами, давайте взглянем на анатомические пути, связанные со зрением.
Рис. 4.3
На хвостовых перьях фазана аргус имеются яркие дискообразные отметины, обычно затененные слева направо, а не сверху вниз. Чарльз Дарвин заметил, что во время ритуала ухаживания птица поднимает хвост. В этом случае диски становятся светлыми сверху, что делает их заметно выпуклыми, как яйца на рисунке 4.2. Вероятно, это является ближайшим эквивалентом птичьих ювелирных украшений.[42]
Когда я был студентом, нас учили, что информация из глазных яблок поступает по зрительному нерву в зрительную кору в задней части головного мозга (так называемую первичную зрительную кору) и что именно здесь происходит то, что мы подразумеваем под словом «видеть». В этой части мозга находится поточечная карта сетчатки — иными словами, каждая точка в пространстве, видимая глазом, соответствует определенной точке на этой карте. Как мы об этом узнали? Дело в том, что при повреждении первичной зрительной коры — скажем, пулей — в зрительном поле возникает соответствующая дыра, или слепое пятно. Более того, из-за некоего поворота в нашей эволюционной истории каждая сторона вашего мозга видит противоположную сторону мира (рис. 4.4). Если вы посмотрите прямо, весь мир слева от вас будет отображаться на вашу правую зрительную кору, а мир справа — на вашу левую зрительную кору[43].
Однако само по себе существование этой карты не объясняет способность видеть, поскольку, как я уже говорил, в нашем мозге нет никакого маленького человечка, который смотрит на то, что отображается на первичной зрительной коре. Карта служит своего рода сортировочным или редакционным отделом, в котором избыточная или бесполезная информация отбрасывается, а определенные характерные атрибуты зрительного образа — такие, как края, — наоборот, выделяются. (Вот почему карикатурист может создать живую картинку всего несколькими штрихами пера, наметив только контуры или края; фактически он делает то, на чем специализируется ваша зрительная система). Отредактированная информация затем передается примерно тридцати различным зрительным областям в мозге, каждая из которых получает полную или частичную карту видимого мира. (Сравнения с «сортировочным отделом» и «ретранслятором» не совсем уместны, поскольку эти первичные области выполняют довольно сложные анализы образов и содержат проекции из высших зрительных центров. Позже мы еще вернемся к данной теме).
Возникает интересный вопрос: зачем нам тридцать областей?[44] Мы не знаем точного ответа, но они, похоже, предназначены для извлечения разных атрибутов зрительной сцены — цвета, глубины, движения и т. п. При выборочном повреждении одной или нескольких областей вы сталкиваетесь с парадоксальными психическими нарушениями, которые наблюдаются у ряда неврологических больных. Один из самых известных примеров в неврологии — случай со швейцаркой (я буду называть ее Ингрид), которая страдала «слепотой к движению». У Ингрид было двустороннее повреждение так называемой зоны MT. В большинстве отношений ее зрение оставалось нормальным; она могла определять форму предметов, узнавать людей и читать книги. Но если она смотрела на бегущего человека или едущую по шоссе машину, она видела череду статических, стробоскопических изображений вместо непрерывного движения. Она боялась переходить улицу, ибо не могла оценить скорость приближающихся автомобилей, хотя запросто могла назвать марку, цвет и даже номерной знак любой машины. Она жаловалась, что беседа с кем-то тет-а-тет ничем не отличалась от разговора по телефону, поскольку она не видела изменений в выражении лица, сопровождающих обычный разговор. Даже такое простое предприятие, как налить чашку кофе, превратилось для нее в подлинное испытание: жидкость неизбежно переливалась и растекалась по полу. Она никогда не знала, когда нужно изменить угол наклона кофейника, ибо не могла оценить, как быстро наполняется чашка. Вам и мне все это кажется таким легким, что мы воспринимаем эти способности как должное. И лишь когда что-то идет не так, мы начинаем понимать, насколько сложно устроена наша зрительная система на самом деле.
Рис. 4.4
Нижняя часть человеческого мозга, вид снизу. Обратите внимание на любопытное расположение волокон, идущих от сетчатки к зрительной коре. Изображение в левом зрительном поле (показано темно-серым) попадает на правую сторону сетчатки правого и левого глаз. Внешние (височные) волокна из правого глаза (показаны светло-серым) идут в правую (зрительную) кору, не пересекаясь в хиазме. Внутренние (назальные) волокна левого глаза (показаны темно-серым) пересекаются в хиазме и также идут в правую зрительную кору. Таким образом, правая зрительная кора «видит» левую сторону мира.
Поскольку существует систематическая карта сетчатки в зрительной коре, «дыра» в зрительной коре приведет к соответствующему слепому пятну (или скотоме) в зрительном поле. При полном удалении правой зрительной коры человек перестанет видеть левую половину мира.[45]
Другой пример включает цветовое зрение. Пациенты с двусторонним поражением зоны V4 полностью слепы к цвету (эта слепота отличается от более распространенной формы врожденной цветовой слепоты, возникающей из-за недостатка чувствительных к цвету пигментов в глазу). В своей книге «Антрополог на Марсе» Оливер Сакс описывает художника, который не заметил, что перенес инсульт. Впрочем, когда он вечером вернулся домой, то с ужасом обнаружил, что все его цветные картины внезапно стали черно-белыми. На самом деле весь мир был черно-белым! Вскоре он понял, что изменились не картины, а он сам. Когда он посмотрел на жену, ее лицо показалось ему грязно-серого цвета, как у крысы.