На протяжении тысячелетий ничего не менялось. Мутации, берущие свое начало в ошибках при копировании, – это важный источник для появления новых форм живых существ. Путем непрерывного образования новых «версий», которые либо не приносят пользы и поэтому быстро исчезают, либо выживают, поскольку являются полезными, в нуклеиновых кислотах сформировался богатый спектр изменений. Эти отличные друг от друга цепочки содержат инструкции, которые составляют генетическую информацию, или геном, отличающихся друг от друга организмов и тем самым приводят к появлению огромного разнообразия форм живых существ.
Нельзя не принимать во внимание того, что по прошествии почти невообразимых более чем 4 млрд лет мир кишит молекулами нуклеиновых кислот, цепочки которых состоят из звеньев, складывающихся в весьма различные комбинации. Однако эти цепочки не находятся в свободном состоянии в окружающей среде, а «приобрели» очень изменчивые по форме «упаковки». В чем же состоит смысл этого замкнутого существования нуклеотидов, скрытых глубоко внутри организмов? Это ни в коем случае не скромное отшельничество. Напротив, эти нуклеиновые кислоты непрерывно и решительно занимаются улучшением собственных характеристик по сравнению с характеристиками подобных им нуклеиновых кислот, являющихся прямыми конкурентами. Как же в этом помогает «упаковка»?
Жизнь становится сложной
Если мы ищем особенности, которые возникли в ходе эволюции на пути от исходного простого самовоспроизводящегося наследственного материала (нуклеиновых кислот) к существующим в наше время формам, то очевидно следующее:
• с течением времени появляются все более сложные структуры;
• структуры достигают большего, будучи единым целым по сравнению с отдельными элементами, из которых они построены;
• структуры могут определять поведение элементов, из которых они сложены.
Сам по себе наследственный материал никоим образом не становится более сложным. Три утверждения, приведенные выше, суммируют очевидную тенденцию в эволюции – развитие «упаковки», или так называемого фенотипа организма, который используется наследственным материалом («геномом») для того, чтобы бросать его в битву с другими организмами и «выживать и воспроизводиться успешнее, чем конкурент».
Первые клетки, представляющие собой раннюю сложную форму организации, сформировались примерно 3500 млн лет назад и включали множество важных функциональных элементов, хотя геном не был заключен в ядре. Это были свободноживущие независимые клетки, бравшие вещество и энергию, необходимые для воспроизводства их генома, из окружающей среды вокруг себя. Свободноживущие одиночные клетки существуют и в наше время, играя важную роль в организации природы. Это бактерии, и, будучи одноклеточными организмами, они остались на данной первичной стадии эволюции и явно способны конкурировать с многоклеточными организмами. В противном случае их бы просто больше не было. Эволюция многоклеточных организмов впервые началась около 600 млн лет назад, примерно на 3000 млн лет позже одноклеточных форм жизни. Во время этого нового большого скачка изначально независимые одноклеточные организмы объединились в многоклеточных существ. Переходя на новый уровень сложности, клетки вначале не отказывались от своей обособленности, а просто жили рядом друг с другом в колониях. Во время этого «случайного события» были «открыты» преимущества двух критически важных свойств: разделения труда и сотрудничества. Таким образом возник «носитель» с особенностями, которые молекулы генома могли успешнее использовать для воспроизводства своего собственного разнообразия. Благодаря скоплению доступных строительных блоков развились сложные структуры. Это бесспорно. Но почему сложные формы тела должны обладать преимуществами? И если это так, то каковы они?
Одно явное преимущество состоит в возможности передавать различные задачи различным отдельным элементам. В таком случае этот вид специализации позволяет разрешать проблемы одновременно, а не последовательно, что наблюдается в случае одноклеточных существ. Возникли узкие специалисты, такие как различные типы клеток у многоклеточных организмов, а также возможность объединения их деятельности, открывающая кардинально новые направления для взаимодействия с окружающей средой. Это явно было очень успешным шагом, потому что в настоящее время облик живой природы определяют многоклеточныеорганизмы.
Вместе с возникновением многоклеточных форм жизни возникла запланированная смерть. Носители, которых геномы создали в виде многоклеточных организмов, были смертными. Можно подумать, что это было не очень хорошим началом для долгосрочной конкурентной борьбы за выживание. Выход из этой дилеммы состоял в том, чтобы защитить от смерти малую часть клеток тела и использовать их для создания «вечной» линии копий, тем самым выторговав выгоду в эффективности, которую обеспечивает многоклеточная организация, в обмен на ограниченную продолжительность жизни. Поэтому многоклеточные животные делегируют передачу генома специализированным клеткам – мужским и женским половым клеткам. Из них складываются родословные линии, которые связывают поколения во времени, и передача генома стала независимой от смерти его носителей.
Поэтому формирование сложных подсистем из устойчивых элементов привело к появлению многоклеточных организмов и к решению проблемы смертности генома.
Родословная линия половых клеток
Описанные выше эволюционные квантовые скачки объединяются общим фактором – формированием из доступных первичных строительных материалов более новых и сложных структур. Добавились новые уровни сложности, и каждый из них добавил в мир живых существ возможности, которые ранее были недоступны. Следуя логике организации элементов в упорядоченные подструктуры, следующим квантовым скачком стало бы создание еще более сложных систем путем агрегации особей в суперорганизмы (рис. 1.1). Поняв первые шаги этой эволюционной прогрессии на Земле, наблюдатель смог бы предсказать появление суперорганизма. Этот шаг кто-то рано или поздно должен был сделать. Единственным условием была доступность соответствующего сырья. Разовьем эту мысль далее: некоторое время спустя сами суперорганизмы объединятся, чтобы образовать следующий уровень бытия, который господствовал бы над суперорганизмом. Эволюция не зашла настолько далеко – пока не зашла. Сможет ли она сделать такой шаг? Есть признаки, в частности виды муравьев, указывающие на то, что указанные события уже могут быть на подходе.
Суперорганизм
Медоносные пчелы в том виде, в каком они существуют сейчас, имея за плечами около 30 млн лет истории, стали почти неизбежным явлением. Они должны были «случиться» на одной из стадий развития жизни. Особенности их тела могли оказаться иными. Они не были обязаны напоминать наших современных медоносных пчел, но никакой конкурентоспособной альтернативы для базовой организации так называемого суперорганизма колонии медоносных пчел просто нет.
Рис. 1.1 На схеме изображены важнейшие квантовые скачки в эволюции сложности у живых организмов. Непрерывная линия элементов, которые возникают из копий и продолжают жить как копии (показаны здесь красными кругами), могла существовать без разрывов с начала жизни до настоящего времени. Изначально вечную линию переносили в своих ядрах отдельные клетки, передавая геном от поколения к поколению. Когда эти отдельные клетки собрались вместе в виде организмов, они стали окружать себя все более и более сложными смертными структурами, но линия продолжилась их половыми клетками. Суперорганизмы вроде колоний медоносных пчел возникли из отдельных организмов, у которых лишь способные к размножению матки и трутни были ответственными за продолжение линии половых клеток. У отдельных организмов соматические клетки образуют систему обслуживания; в суперорганизме пчелиной колонии эту роль берут на себя рабочие пчелы. Пустые круги на схеме представляют элементы, которые не способны создавать собственные копии, но развились, чтобы оказывать поддержку тем элементам, которые могут это делать
Медоносные пчелы, однако, могли «случиться» только потому, что они принесли с собой необходимые условия. Предположить появление суперорганизма теоретически – это одно, но найти его фактически – это уже совсем другое. Суперорганизмы, значимость которых достойна внимания, в дикой природе встречаются лишь среди перепончатокрылых (Hymenoptera) (если не считать таксономически обособленных от них термитов) – это муравьи, медоносные пчелы, шмели и осы. Ответ на вопрос о том, какие условия необходимы для появления суперорганизма, дан в главе 9.
В суперорганизме колонии медоносных пчел мы наблюдаем очень сложную систему, но, подобно более простым системам, она является всего лишь носителем для генома. Даже в этой усовершенствованной упаковке геном «преследует» ту же самую цель, что и молекулы в первичном бульоне, а именно: чтобы его распространение было успешнее, чем у конкурента. Конечно же, в действительности молекулы не «преследуют» цель. Но, если наблюдать течение эволюционного процесса, элементы, которые выживают, ведут себя так, как если бы они активно следовали цели многократного копирования самих себя. Это выражение – описание процесса, но мы упрощаем концепцию, используя антропоморфические термины вроде «молекулы борются за…», или «они хотят…», или «их цель…».
Специализированные индивидуумы в суперорганизмах берут на себя функцию передачи генома, точно так же как половые клетки у многоклеточных организмов. Колонии создаются немногими сексуально активными особями, занятыми прямой передачей генов, и множеством индивидуумов, которые не размножаются, но решают важные задачи по содержанию колонии вроде выращивания и контроля качества сексуально активных особей.
Могут ли более сложные структуры действительно достигать чего-то большего, чем отдельные элементы, из которых они построены, как утверждалось выше? И справедливо ли это также и для медоносных пчел? Сложные структуры, благодаря тому что они составлены из элементарных единиц, включают большее количество компонентов, чем более простые, и, следовательно, имеют больше возможностей для взаимодействия компонентов внутри них. По этой причине сложные структуры в некоторых условиях демонстрируют свойства, которые нельзя объяснить свойствами их отдельных элементов: о том, что целое иногда может быть больше, чем простая сумма его частей, знал и писал еще Аристотель. И действительно, на основе потока информации, связывающего всех индивидуумов, колония медоносных пчел как единое целое способна «принимать решения», которые не смогли бы принять отдельно взятые медоносные пчелы. Выгода, которую колония медоносных пчел приобрела путем сбора воедино и слияния различных способностей индивидуумов, подробно изложена в главе 10.