и исчезли из нашей Вселенной.
Так что предвидение будущего, похоже, исключается, по крайней мере в обозримом будущем, а это значит, что его следует отнести к III классу невозможности. Если когда-нибудь удастся доказать при помощи воспроизводимых экспериментов, что предвидеть будущее все же можно, современную физику придется пересматривать до самого основания.
Глава 16. Параллельные вселенные
Хотя мысль о высших пространственных измерениях – не подтвержденная экспериментом гипотеза, в глазах физиков она выглядит весьма убедительной. Она обещает отрубить головы дракону бесконечностей, как нить Ариадны ведет физиков к последовательной и самосогласованной теории вещества и поля. Трудно даже подумать, что столь плодотворная идея может оказаться всего лишь временной теоретической химерой.
И тогда крошечный участок Вселенной может внезапно расшириться и «образовать почку», пустить побег «дочерней» вселенной, от которой, в свою очередь, может отпочковаться новая дочерняя вселенная; при этом процесс «почкования» продолжается беспрерывно. Представьте, что вы пускаете мыльные пузыри. Если дуть достаточно сильно, то можно увидеть, как некоторые из них делятся, образуя новые, «дочерние» пузыри. Подобным образом одни вселенные могут постоянно давать начало другим вселенным. Согласно этому сценарию, Большие взрывы происходили все время, происходят и сейчас. Если это верно, то, возможно, мы плаваем в море таких вселенных, словно пузырек, покачивающийся в океане среди других пузырьков.
Итак, рассмотрев современные концепции времени и даже теорию путешествий в этом необычном измерении нашей текущей реальности, нам остается только разобраться, откуда же конкретно может поступать информация из будущего.
В средней школе мы учим, что здание физики покоится на фундаменте законов сохранения, но редко при этом понимаем, что те, в свою очередь, скреплены между собой принципами физической симметрии. Между тем получается, что симметрия – это самое главное, что есть в физике, и с этим, поразмыслив, нельзя не согласиться. В физике есть теорема о том, что каждой симметрии обязательно сопутствует некоторая сохраняющаяся величина. Так, если все свойства системы остаются неизменными при вращении, должен сохраняться ее момент количества движения. Симметрии в свойствах элементарных частиц связаны с законами сохранения электрического заряда, странности и других характеристик. Законы сохранения устанавливают ограничения на возможные движения системы и происходящие в ней процессы. Их знание чрезвычайно важно для понимания ее свойств.
Параллельная реальность
Тут надо вспомнить об очень важном свойстве поля калибровать частицы. Симметрия системы при этом мгновенно разрушается. Поле по-разному взаимодействует с симметричными состояниями частиц и как бы навешивает им ярлыки – этикетки, по которым можно судить об их зарядовом состоянии и прочих параметрах. Например, оно позволяет установить, какая из двух симметричных частиц является отрицательно заряженным электроном, а какая – положительным позитроном. При этом полевая калибровка может меняться в разных областях пространства и времени.
Теперь опустимся на самое «дно» материи, вымощенное сверхэлементарными кирпичиками из шести известных нам сегодня кварков, составляющих все известные элементарные частицы. Кварки представляют собой семейство трех совершенно равноправных, симметричных между собой частиц, а калибрует их действующее на очень малых расстояниях особое глюонное поле. Оно по-разному взаимодействует с компонентами кваркового триплета, окрашивая их в условные, придуманные физиками цвета: красный, синий и желтый. Подчеркнем, что цвета кварков с истинной их окраской ничего общего не имеют и их можно было бы заменить, скажем, штриховкой: косой, в клетку и ромбиком.
Четыреста лет назад Галилео Галилей открыл замечательную симметрию двух систем координат – неподвижной и равномерно движущейся вдоль прямой линии. Физические процессы протекают в них совершенно одинаково. Так, находясь в трюме корабля, никакими опытами нельзя установить, пришвартован ли он в порту или равномерно и плавно пересекает океан. Правда, такую полную симметрию Галилей установил только для сравнительно небольших скоростей механических процессов. В начале прошлого века уже Лоренц, Пуанкаре и Эйнштейн доказали, что подобная симметрия сохраняется при любых скоростях, вплоть до скорости света. При этом она будет справедлива не только для механических, но и вообще для любых физических процессов. С помощью разработанных в теоретической физике правил для этой симметрии можно найти свое калибровочное поле. Оказывается, эту роль выполняет уже так хорошо нам знакомая гравитация!
Получается, что если поле калибрирует движения с разными скоростями, то его уравнения будут в точности совпадать с гравитационными уравнениями общей теории относительности. Другими словами, общую теорию относительности можно строить двумя путями: исходя из физических соображений о свойствах гравитации, как это сделал в свое время Эйнштейн, или основываясь на законах симметрии. Второй путь позволяет продвинуться еще дальше – если найти более общую симметрию. Тогда калибрующее ее поле будет подчиняться какой-то обобщенной теории относительности. Теория как бы подсказывает путь ее развития – нужно открыть еще одну симметрию, только такую общую, чтобы она охватывала все известные нам виды материи.
Как-то раз физики-теоретики, в очередной раз перебирая умозрительные построения, натолкнулись на очень странный результат, полученный в начале двадцатых годов прошлого века польским физиком Теодором Калуцей, преподававшим в то время в Кенигсбергском университете. Профессор Калуца подверг глубокому анализу ряд положений общей теории относительности и в первую очередь рассмотрел вывод о том, что, являясь физической силой, тяготение тем не менее имеет чисто геометрическую природу, являясь искривленностью четырехмерного пространства-времени. Кроме гравитации, в то время был известен только один тип силового поля, открытого в свое время Максвеллом, – электромагнитного, и Калуца предположил, что оно так же имеет геометрическую природу.
Этот парадоксальный результат очень пригодился при создании теории единого суперполя, все компоненты которого, основываясь на идее Калуцы, можно было бы считать гравитацией в многомерном пространстве-времени. Правда, здесь опять возникает каверзный вопрос: почему мы никак не ощущаем наличия дополнительных пространственных измерений в окружающей физической реальности[19]?
Ответ на данный вопрос пока удается получать только писателям-фантастам, многократно эксплуатирующим идею многомерных миров. Любопытно, что даже художественный поверхностный анализ подобной концепции сразу же приводит к некоторым вполне разумным выводам.
Можно, конечно, придумать Вселенную и из полностью независимых параллельных миров, каждый из которых, подобно гладкой шелковой ленте, повторяет все изгибы соседнего. Многие писатели-фантасты давно уже продуктивно эксплуатируют подобные идеи.
Тут надо заметить, и это очень важно для подрастающего поколения, что очень часто достижения современной теорфизики бессовестно эксплуатируются самыми различными жуликами и шарлатанами с паранормальными чудесами. Ничего подобного в нашей реальности никогда не наблюдалось, не наблюдается и вполне очевидно, что никогда наблюдаться не будет. Разумеется, ежеминутно средства массовой информации потчуют нас всевозможными чудесами телепатии, телекинеза, ясновидения, НЛО, пришельцами из прошлого и будущего и проч. К сожалению (ибо ученые тоже любят фантастику и научные чудеса!), все подобные ложные сенсации связаны лишь с нарушением (и иногда достаточно тяжелым!) психики т. н. «очевидцев», а иногда и журналистов, раздувающих в поте лица мыльные пузыри подобных газетных уток. Ведь трудновообразимое количество самых тщательных, с огромной точностью выполненных экспериментов с элементарными частицами (а в этом случае можно получить наибольшую точность) не обнаружили никаких, даже самых малейших, нарушений причинности событий в нашем мире. При наблюдении грандиозных космических явлений эстафету у физиков перенимают астрономы и космологи, которые также категорически отрицают наличие каких-либо чудес в границах нашей Метагалактики…
Есть еще одно соображение, которое, казалось бы, убедительно говорит о том, что в нашем мире нет в явном (несвернутом) виде ни четвертого, ни более высоких пространственных измерений. Английский астрофизик Артур Эддингтон доказал, что в этом случае вообще не было бы атомного вещества, так как в мирах с числом измерений, большим трех, электрические заряды взаимодействуют слишком сильно. Электроны там не могут удержаться на орбитах, и атомы «взрываются внутрь», или коллапсируют. Может быть, такие своеобразные миры где-то и существуют вне нашей реальности, но в нашей Вселенной атомы вполне устойчивы. Трудность с лишними пространственными измерениями была главной причиной подозрительного отношения физиков к идее Калуцы. Первую серьезную попытку справиться с ней предпринял шведский теоретик Оскар Клейн. Перечитывая своего любимого Уэллса, в «Машине времени» он наткнулся на следующий диалог:
«– Можно ли признать действительно существующим кубом то, что не существует ни единого мгновения?
Филби задумался.
– А из этого следует, – продолжал Путешественник по Времени, – что каждое реальное тело должно обладать четырьмя измерениями: оно должно иметь длину, ширину, высоту и продолжительность существования. Но вследствие прирожденной ограниченности нашего ума мы не замечаем этого факта. И все же существуют четыре измерения, из которых три мы называем пространственными, а четвертое – временным. Правда, существует тенденция противопоставить три первых измерения последнему, но только потому, что наше сознание от начала нашей жизни и до ее конца движется рывками лишь в одном-единственном направлении этого последнего измерения…».