Феномен Мессинга. Как получать информацию из будущего? — страница 46 из 57

По мнению этого ученого, классик фантастического жанра был вполне прав, и четвертое пространственно-временное измерение существует реально и не ощущается нами лишь потому, что мир в этом направлении имеет микроскопически малый радиус, представая неким замкнутым на себя крошечным пузырьком «вырожденной реальности».

Вспомним структуру электромагнитного поля, представив себе две разноименно заряженные металлические пластины и слой электрических силовых линий между ними. Если пластины раздвинуть на расстояние, много большее их размеров, слой превратится в жгут силовых линий. Он обладает определенной упругостью, и его можно назвать электрической полевой струной. Подобная же магнитная струна образуется между двумя намагниченными шариками. С помощью мелких железных опилок ее можно сделать видимой и убедиться в том, что, будучи отклоненной в сторону, она упруго восстанавливает свою форму. Размеры элементарных частиц в тысячи раз больше размеров составляющих их кварков, поэтому между кварками тоже натягиваются струны – суперструны глюонного поля. Их можно заметить в столкновениях частиц. Образование полевых струн – весьма распространенное явление в мире элементарных частиц.

Согласно концепции одного из самых оригинальных физиков прошлого века Давида Бома, окружающий нас мир структурирован очень странным образом, когда каждое материальное тело напоминает верхушку айсберга над окружающей нас физической реальностью. Основная же часть каждого предмета как бы расплывается за гранью вещественного мира, образуя единую основу Вселенной. Свои рассуждения Бом основывал на понятии «неразрывного единства» микромира, проявляющегося в квантовой запутанности «сцепленных» частиц. Как мы знаем, эти микроскопические объекты ведут себя строго взаимосогласованно, так что изменение состояния одного приводит к мгновенной перемене у другого, пусть даже он находится на другом конце Метагалактики.

Размышляя над этой загадкой, противоречащей не только здравому смыслу, но и теории относительности, налагающей жесткие ограничения на скорость распространения взаимодействий, Бом пришел к выводу, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются таинственными сигналами между собой, а потому, что сама их «разделенность» во многом иллюзорна. Иными словами, на каком-то более глубоком уровне реальности сцепленные частицы – это вовсе не отдельные объекты, а фактически продолжения чего-то более фундаментального и цельного.

Распространяя свои идеи на мир элементарных частиц, Бом заключил, что сверхсветовое взаимодействие между ними свидетельствует о существовании более глубокого уровня реальности, не только скрытого от нас, но и имеющего более высокую размерность. А частицы мы видим раздельными по той причине, что способны наблюдать лишь часть действительности. Частицы – не отдельные «фрагменты», но грани, проекции более глубокого единства. И поскольку все в физической реальности содержится в этом «фантоме», наш мир, воспринимаемый в ощущениях, предстает лишь как трехмерная проекция многомерной Вселенной.

В восьмидесятых годах прошлого века уровень развития экспериментальной физики позволил опытным путем подтвердить парадоксальный феномен ЭПР, по иронии судьбы специально сформулированный в 1930-е годы Эйнштейном и его коллегами для демонстрации изъянов в построениях квантовой теории. Успешные эксперименты возродили интерес к теории Бома, а открытая в те же годы Бенуа Мандельбротом фрактальная геометрия дополнила ее математический аппарат. Фрактальные структуры успешно описывали упорядоченный хаос природы, демонстрируя «голографический» принцип бесконечного вложения самоподобных структур друг в друга на основе весьма простых математических соотношений. Некоторый математический фундамент удалось заложить в свою теорию и Дэвиду Бому, однако необъятность задачи, преклонные годы и переключение интересов на вопросы соотношения физики и сознания помешали ученому развить и дополнить свою концепцию голографической вселенной до объемной полноценной теории.

Наблюдения за Вселенной показывают, что и на самых больших масштабах она вовсе не неподвижна, а эволюционирует с течением времени. Если на основе современных теорий проследить эту эволюцию назад во времени, то окажется, что наблюдаемая ныне часть Вселенной была раньше горячее и компактнее, чем сейчас, а начало ей дал Большой взрыв – некий процесс возникновения Вселенной из сингулярности: особой ситуации, для которой современные законы физики неприменимы.

Физиков такое положение вещей не устраивает: им хочется понять и сам процесс Большого взрыва. Именно поэтому сейчас предпринимаются многочисленные попытки построить теорию, которая была бы применима и к этой ситуации. Поскольку в первые мгновения после Большого взрыва самой главной силой была гравитация, считается, что достичь этой цели возможно только в рамках пока гипотетичной квантовой теории гравитации[20].

Одно время физики надеялись, что квантовая гравитация будет описана с помощью теории суперструн, но недавний кризис суперструнных теорий поколебал эту уверенность. В такой ситуации больше внимания стали привлекать иные подходы к описанию квантовогравитационных явлений, в частности петлевая квантовая гравитация.

Именно в рамках петлевой квантовой гравитации недавно был получен очень впечатляющий результат. Оказывается, из-за квантовых эффектов начальная сингулярность исчезает. Большой взрыв перестает быть особой точкой, и удается не только проследить его протекание, но и заглянуть в то, что было до Большого взрыва. Петлевая квантовая гравитация принципиально отличается от обычных физических теорий и даже от теории суперструн. Объектами теории суперструн, к примеру, являются разнообразные струны и многомерные мембраны, которые, однако, летают в заранее приготовленном для них пространстве и времени. Вопрос о том, как именно возникло это многомерное пространство-время, в такой теории не решишь.

В петлевой теории гравитации главные объекты – маленькие квантовые ячейки пространства, определенным способом соединенные друг с другом. Законом их соединения и их состоянием управляет некоторое поле, которое в них существует. Величина этого поля является для этих ячеек неким «внутренним временем»: переход от слабого поля к более сильному полю выглядит совершенно так, как если бы было некое «прошлое», которое бы влияло на некое «будущее». Закон этот устроен так, что для достаточно большой вселенной с малой концентрацией энергии (то есть далеко от сингулярности) ячейки как бы «сплавляются» друг с другом, образуя привычное нам «сплошное» пространство-время.

Конечно, даже развитому физико-математическому воображению теоретика непросто в деталях представить, как многомерная мембрана нашей Вселенной парит в еще более многомерном пространстве, как некое подобие гигантской медузы в безбрежном океане Сверхпространства. В этой модели Мироздания и сам Большой взрыв, возможно, был результатом соударения нашей и параллельной мембран. Эта модель некоторым физикам кажется настолько привлекательной, что они отстаивают предположение о циклических мембранных столкновениях. Входя в контакт, эти вселенские мембраны как бы сжимаются в направлении, перпендикулярном направлению движения, а их кинетическая энергия преобразуется в материю и излучение. Это соударение двух, а может быть, и нескольких мембран и порождает феномен Большого взрыва. После взрывного взаимодействия мембраны расходятся и начинают расширяться с убывающей скоростью. Материя Большого взрыва эволюционирует от стрингов до сверхскоплений галактик, порождая разум, который и открывает тайны Мироздания. В циклической модели силы притяжения замедляют до остановки движение расходящихся мембран, которые снова начинают сближаться, расширяясь при этом с возрастающей скоростью.

Условия вблизи нулевого момента времени, соответствующего началу Большого взрыва, настолько экстремальны, что никто пока не знает, как решать соответствующие уравнения. Сейчас в ходу две модели, описывающие досингулярное состояние нашей Вселенной. Один из космологических сценариев предвзрывного состояния мира основывается на известной симметрии обращения времени, в силу которой физические уравнения работают одинаково хорошо независимо от направления времени. Такая комбинация позволяет говорить о новых возможных вариантах космологии, в которых Вселенная за определенный промежуток времени до Большого взрыва расширялась с такой же скоростью, как и через такой же интервал после него. Однако изменение скорости расширения в эти моменты происходило в противоположных направлениях: если после Большого взрыва расширение замедлялось, то перед ним – ускорялось. Короче говоря, Большой взрыв, возможно, был не моментом возникновения Вселенной, а просто внезапным переходом от ускорения к замедлению.

В соответствии с такой моделью Вселенная перед Большим взрывом была почти идеальным зеркальным изображением самой себя после него. Если Вселенная безгранично устремляется в будущее, в котором ее содержимое разжижается до скудной кашицы, то она так же бескрайне простирается и в прошлое. Бесконечно давно она была почти пуста: ее заполнял лишь невероятно разреженный, хаотический газ из излучения и вещества. Силы природы, управляемые дилатоном, были настолько слабы, что частицы этого газа практически не взаимодействовали друг с другом. Но время шло, силы возрастали и стягивали материю воедино. Случайным образом материя скапливалась в некоторых участках пространства. Там ее плотность в конечном счете стала настолько высокой, что начали образовываться черные дыры. Вещество внутри таких областей оказывалось отрезанным от окружающего пространства, т. е. Вселенная разбивалась на обособленные части.

Внутри черной дыры пространство и время меняются ролями: ее центр – не точка пространства, а момент времени. Падающая в черную дыру материя, приближаясь к центру, становится все более плотной. Но, достигнув максимальных значений, допускаемых теорией струн, плотность, температура и кривизна пространства-времени внезапно начинают уменьшаться. Момент такого реверсирования и есть то, что мы называем Большим взрывом. Внутренность одной из данных черных дыр и могла трансформироваться в нашу Вселенную.