Действительно, та установка, которую Ш. Кулон использовал при изучении кручения нитей — это и есть крутильные весы. Ее нужно было только переосмыслить. В общем плане это выглядит так: изучив влияние явления X на явление Y, мы получаем возможность использовать Y как прибор при изучении X.
Но Ш. Кулон мог и не опираться на этот общий принцип, ибо у него был конкретный образец аналогичного функционального переосмысления экспериментальной установки в работах основателя теории упругости Роберта Гука. Исследуя деформацию спиральных и винтовых пружин, Р.Гук тут же осознает свои результаты как изобретение особых «философских весов», необходимых для того, «чтобы определять вес любого тела без применения гирь».
Иными словами, и здесь Ш.Кулон работал в рамках определенной традиции.
Итак, крутильные весы не нужно было специально ни изобретать, ни строить.
Кулону требовалось только понять, что, решая одну задачу, он, сам того не желая, решил и вторую.
Определяя, как угол закручивания нити зависит от действующей силы, он получил тем самым и метод измерения сил.
Но тут мы как раз и подходим к самому интересному. До сих пор Кулон работал, как мы уже отмечали, в традиции теории упругости и сопротивления материалов. Однако переосмыслить свою экспериментальную установку и осознать ее как весы, он смог только благодаря другой традиции, традиции измерения. Эта последняя определяет совершенно новую точку зрения на происходящее, она только и ждет, чтобы подхватить побочный результат предыдущей работы.
Но переосмыслив свою экспериментальную установку как весы, Кулон точно вступает на широкую столбовую дорогу, на которой можно встретить людей с очень разными приборами и разными задачами.
Среди того, что их объединяет, нам важно следующее: методы измерения в широких пределах безразличны к конкретному содержанию тех дисциплин, где они применяются. Неудивительно поэтому, что традиция измерения сразу же уводит Ш. Кулона за пределы его первоначальной сравнительно узкой области.
«Кулон, по-видимому, интересовался не столько электричеством, сколько приборами, — пишет Г. Липсон. — Он придумал чрезвычайно чувствительный прибор для измерения силы... и искал возможности его применения».
Как мы уже видели, Ш. Кулону ничего не надо было «придумывать», но в остальном с Г.Липсоном можно согласиться. Получив в свои руки метод измерения малых сил, Ш. Кулон сразу становится как бы «космополитом» и начинает путешествовать из одной сферы экспериментального исследования в другую.
Правда, и теперь он не сразу приступает к проблемам теории электричества, но начинает с исследования трения между жидкостями и твердыми телами. Это еще раз подчеркивает, что измерение силы взаимодействия между зарядами никогда не было его исходной задачей — ни при изучении кручения нитей, ни при «построении» крутильных весов.
Не метод строился здесь под задачу, а, наоборот, наличие метода требовало поиска соответствующих задач.
Подведем некоторые итоги. Мы пытались показать, что Ш.Кулона вовсе не посещало гениальное озарение. Скорей наоборот, он все время двигался как бы по проторенным дорогам. Мы при этом отнюдь не хотели как-то принизить его достижения в области сопротивления материалов и теории упругости. Он прочно вошел в историю этих дисциплин как талантливый исследователь.
Но он здесь продолжатель уже существующих традиций, которые были заложены еще Галилео Галилеем и Робертом Гуком.
Может быть, в развитии учения об электричестве он стоит совершенно обособленно?
Оказывается, что и это не так.
К формулировкам, близким к закону Ш.Кулона, чисто теоретически подходили Ф.Эпинус (1759 г.), Дж.Пристли (1771 г.), Г.Кавендиш (1773 г.). Иногда этот закон даже называют законом Кулона—Кавендиша. И в то же время очевидно, что Ш.Кулон не помещается полностью ни в одной из этих традиций, и это выдвигает его фигуру на совершенно особое место.
Закон Кулона не мог быть вскрыт в рамках парадигмы теории упругости, крутильные весы не могли появиться в рамках учения об электричестве.
Своеобразие ситуации в том и состоит, что Ш. Кулон оказался в точке взаимодействия указанных традиций, соединив их неповторимым образом.
Путь Ш. Кулона — это как бы движение по проторенным дорогам, но с пересадками. Сначала это дорога сопротивления материалов и теории упругости, затем традиция измерения сил. «Пересадка» возможна благодаря появлению особого объекта (в Данном случае — это экспериментальная установка при исследовании кручения), который может быть осмыслен и использован в рамках как одной, так и другой традиции работы.
Но не так ли и железнодорожная станция, лежащая на пересечении нескольких дорог?
Такие полифункциональные объекты, подобные многоликим Янусам, мы будем в дальнейшем называть инверсивными. Очевидно, что большинство вещей, которые нас окружают, могут быть включены в деятельность различным образом, в рамках разных традиций и в этом смысле являются инверсивными объектами. Акт их функционального переосмысления мы будем называть актом инверсии. Такой акт — это и есть «пересадка». И как на узловых станциях можно встретить самых разных людей, которых нигде в другом пункте не увидишь вместе, так и инверсивные объекты — это точки взаимного проникновения и обогащения разных традиций работы.
Т. Кун рассматривает Ш.Кулона как представителя парадигмы теории электричества. Об этом свидетельствует целый ряд мест в его «Структуре научных революций». «До того, как Кулон смог сконструировать свой прибор и с помощью этого прибора произвести измерения, — пишет Т.Кун, — он использовал теорию электричества для того, чтобы определить, каким образом его прибор может быть построен». Это примерно та же точка зрения, что и у С.П.Тимошенко: крутильные весы целенаправленно конструируются для измерения взаимодействия электрических зарядов. Мы уже видели, что это противоречит чисто фактической стороне дела.
Но суть не только в приборе.
Можно, вероятно, утверждать, что в теории электричества Кулон вообще был только «проездом».
Историк физики Марио Льоцци пишет по этому поводу следующее: «Таким образом, 48-летний французский инженер, никогда специально не занимавшийся электричеством и магнетизмом (известна лишь одна его заметка о способе намагничивания железных стрелок), в качестве побочного занятия проводил исследования, обессмертившие его имя».
Это верно, хотя термин «побочное занятие» недостаточно полно характеризует существо дела.
Крайне любопытна дальнейшая судьба закона Кулона. Его открытие, как подчеркивает Я.Г.Дорфман, «не внесло... на первых порах никаких новых результатов в развитие учения об электричестве. Плоды этого важного открытия обозначились лишь примерно через 25 лет, когда Пуассон с помощью этого закона решил математическую задачу о распределении заряда на различных проводниках и системах проводников (1811 г.)».
Что же произошло?
Дело в том, что закон Кулона тоже представляет собой своеобразный инверсивный объект.
— С одной стороны, он имеет конкретное физическое содержание и в этом плане тесно связан с традицией изучения именно электрических явлений.
— Но, с другой стороны, по своей математической форме он совпадает с законом всемирного тяготения Ньютона.
Именно этот акт инверсии и осуществил С.Пуассон, после чего в электростатику хлынули математические методы теоретической механики, которые разрабатывались до этого в трудах Эйлера, Лагранжа и Лапласа. Это методы математической теории потенциала. Пуассон в своей работе 1811 г. как раз и осуществляет распространение математического понятия потенциала на электрическое и магнитное поля.
«Весь этот быстрый прогресс теории электричества, — пишет Марио Льоцци, — был бы невозможен без предварительного развития идей и аналитических методов теоретической механики».
И здесь, следовательно, мы тоже имеем дело с взаимодействием различных традиций, и С.Пуассон как бы осуществляет «Пересадку» с одного поезда на другой. Пример показывает, что недостаточно просто получить какой-то результат, недостаточно сделать открытие, важно, чтобы сделанное было подхвачено какой-либо достаточно мощной традицией.
МЕТАФОРИЧЕСКИЕ ПРОГРАММЫ И ВЗАИМОДЕЙСТВИЕ НАУК
Нередко новации в развитии науки бывают обусловлены переносом образцов из одной области знания в другую в форме своеобразных метафор.
Поясним это сначала на простом бытовом примере.
Представьте себе добросовестного канцелярского служаку, который на каждого посетителя заполняет карточку с указанием фамилии, года и места рождения, национальности, родителей... Его работа стандартна и традиционна, хотя каждый раз он имеет дело с новым человеком и никого не опрашивает дважды. И вот неожиданно его переводят из канцелярии в библиотеку и предлагают составить каталог с описанием имеющихся книг.
Предположим, что наш герой абсолютно не знаком с библиотечным делом и не получил никаких инструкций. Может ли он и на новом месте следовать прежним образцам?
Может, если перейдет к их метафорическому истолкованию. Книга — это аналог человека, и она тоже имеет «фамилию», т.е. название, год и место «рождения», т.е. издания, «национальность», т.е. язык, на котором она написана, «родителей», т.е. автора.
Но разве не то же самое происходит тогда, когда по образцу одной научной дисциплины или одной теории строятся науки или теории-близнецы? Вспомним пример с экологией, которая, возникнув как биологическая дисциплина, уже породила немало таких близнецов: экология преступности, экология народонаселения, культурная экология... Разве выражение «экология преступности» не напоминает метафоры типа «дыхание эпохи» или « бег времени»?
Проанализируем еще один, несколько более сложный пример.
В развитии геоморфологии, науки о формах рельефа, огромную роль сыграла теория эрозионных циклов В.Дэвиса. Согласно этой теории, все разнообразные формы рельефа образуются под воздействием двух основных факторов — тектонических поднятий суши и обратно направленных процессов эрозии. Не вызывает сомнения тот факт, что В.Дэвис работал в определенных традициях.