Философия оптимизма — страница 23 из 74

льше, чем энергия, получаемая из того же количества вещества при перегруппировке атомов в молекулах, например при сгорании топлива. В атомной физике энергия обычно измеряется электронвольтами (эв). Электронвольт — это энергия одного электрона, которую он приобретает, пройдя разность потенциалов в один вольт. При делении одного ядра урана выделяется 200 млн. эв энергии — в несколько миллионов раз больше, чем. приходится на один атом при выделяющих энергию химических реакциях, например при горении топлива. Один грамм урана дает больше тепла, чем три тонны сгорающего угля.

Практическая возможность перегруппировки ядерных частиц в ядра с большим дефектом массы и использования разницы в дефекте массы стала вырисовываться в 30-е воды. В начале 30-х годов были открыты уже упоминавшиеся частицы, не имеющие электрического заряда, — нейтроны. Лишенные заряда, они не испытывают кулоновского отталкивания со стороны ядер и могут легко проникать в ядра и вызывать ядерные реакции. До конца 30-х годов были известны лишь ядерные реакции радиоактивного распада, при которых из ядра вылетают одна или несколько ядерных частиц и элемент переходит в соседнюю или близкую клетку таблицы Менделеева. В 1939 г. выяснилось, что при бомбардировке урана нейтронами ядро урана раскалывается на две почти равные половины — атомные ядра элементов, стоящих в середине таблицы Менделеева. Разница в дефекте массы уже указана — 200 млн. эв, так что на каждую ядерную частицу приходится около миллиона электрон-вольт «экономии». Освобождение этой энергии (соответствующее уменьшению массы ядра урана при его расщеплении) в виде кинетической энергии осколков урановых ядер и в виде излучений сопровождается вылетом из делящихся ядер новых нейтронов, которые попадают в другие ядра, и таким образом при известных условиях возникает цепная реакция, иначе говоря, первый же нейтрон (а они могут возникать в уране спонтанно либо под действием космических лучей) вызовет деление всей массы урана.

Цепная реакция не прекращается, если при делении ядра выделится число нейтронов, в среднем большее единицы, т. е. на каждый затраченный нейтрон выделится больше одного нового нейтрона. Развитию цепной реакции мешает захват нейтронов ядрами, которые при захвате не делятся. Если из каждой группы выделившихся новых нейтронов слишком много нейтронов будет захвачено ядрами без деления этих ядер, цепной реакции не произойдет. Обычный природный уран состоит в основном из двух изотопов: урана-238 с 238 ядерными частицами и урана-235 с 235 частицами (есть еще третий изотоп — уран-233 с 233 частицами; его в природном уране совсем мало). Урана-238 в 140 раз больше, чем урана-235. Ядра этих изотопов по-разному реагируют на попадание медленного (с энергией не больше 2 млн. эв) нейтрона. В уране-238 ядра, захватывая такой нейтрон, превращаются в ядра нового изотопа — урана-239. Таким образом, они не распадаются. Каждый новый нейтроне имеет во много раз больше шансов быть захваченный ядром урана-238, чем вызвать деление и участвовать 9 цепной реакции.

Поэтому в обычном, природном уране цепной реакции не происходит. Другое дело, если выделить уран-235. Ядра этого изотопа делятся при попадании нейтрона в ядро, и в выделенном, чистом уране-235 начинается цепная реакция. Но здесь требуется дополнительное условие. Если кусок урана-235 мал, большинство нейтронов уйдет из этого куска, не вызвав деления ядер: для цепной реакции нужен кусок урана-235 не меньше определенной, критической массы.

Теперь посмотрим, что происходит, когда ядро урана-238 захватывает нейтрон. Оно становится ядром урана-239. Этот неустойчивый изотоп очень быстро распадается и при этом переходит в изотоп нептуния-239 — нового, искусственно полученного элемента таблицы Менделеева, первого из более тяжелых, чем уран, элементов — трансуранов. Далее, нептуний, обладающий периодом полураспада 2,3 дня, превращается в изотоп плутония. Ядра плутония делятся под влиянием нейтронов, подобно ядрам урана-235.

Нейтроны с энергией ниже 2 млн. эв вызывают деление урана-235 и плутония. Они могли бы поддерживать цепную реакцию и в природном уране, если бы удалось уменьшить шансы захвата нейтронов ураном-238. Очень медленные нейтроны обладают такими уменьшенными шансами захвата. Но как добиться, чтобы сравнительно быстрые нейтроны, образующиеся при делении урана-235 (их энергия в среднем около 2 млн. эв), уменьшили свою скорость, чтобы их энергия достигла нескольких электронвольт и ниже до встречи с ядрами урана-238? С такой малой энергией нейтроны избегнут захвата ядрами урана-238, вызовут деление урана-235, и при надлежащих условиях начнется цепная реакция. Если пронизать толщу природного урана другим веществом, замедляющим нейтроны, но мало захватывающим их, то задача может быть решена. В качестве подобного замедлителя может фигурировать водород — его ядра при упругих столкновениях с нейтронами замедляют их. Но ядра водорода слишком часто захватывают нейтроны, образуя ядра тяжелого водорода — дейтерия. Поэтому, применив в качестве замедлителя воду, т. е. вещество, в котором много водорода, мы не получим цепной реакции в природном Стране; вода как замедлитель пригодна, если применяется' обогащенный уран, с большим, чем в природном уране, содержанием урана-235. Дейтерий, т. е. тяжелый водород, в ядре которого кроме протона есть еще нейтрон, меньше захватывает нейтроны, и если взять тяжелую воду (т. е. вещество, где водород заменен дейтерием), то можно пользоваться природным ураном. Можно еще использовать в качестве замедлителя графит; урановые стержни в графитовом блоке были применены уже в первом ядерном реакторе.

Теперь несколько слов о реакторах, в которых распад ядер урана используется для получения тепла и производства электроэнергии. Осколки ядер обладают большой кинетической энергией; они передают эту энергию окружающей среде, и температура последней повышается. Чтобы повышение температуры не разрушило реактора, в «активную зону», т. е. в пространство, где происходит деление урана, вводят кадмиевые стержни, которые сильно поглощают нейтроны. Ввод этих стержней позволяет регулировать реакцию и выделение тепла.

Отвод тепла производится с помощью теплоносителя — воды, жидкого металла или газа с малой химической активностью.

Начало атомной энергетики и начало атомного века — это отнюдь не атомные бомбы. Ведь началом эры тепловых двигателей было не огнестрельное оружие, которое можно рассматривать как цилиндр, из которого поршень под давлением расширяющихся газов вылетает наружу в виде снаряда или пули. Такой однотактный двигатель не был началом теплоэнергетики, хотя именно он заставил Лейбница, Гюйгенса и Папена подумать о промышленном двигателе, превращающем давление газа или пара в механическую работу. Первые реакторы, вырабатывавшие плутоний для атомных бомб, реализовали физическую схему, которая, трансформировавшись, стала основой собственно энергетического применения ядерных реакторов. Трансформация была достаточно глубокой, хотя и не столь коренной и уже совсем не столь длительной, как та, которая отделяла огнестрельное оружие от тепловых двигателей. В реакторах, где изготовлялся плутоний для атомных бомб, происходили два основных ядерных процесса. Первый состоял в делении ядер урана-235. Чтобы этот процесс продолжался и оказывался цепной реакцией, чтобы число нейтронов, выделяющихся при делении и вызывающих деление других ядер урана-235, не уменьшалось, нужно было, как уже говорилось, замедлять нейтроны. Но такое замещение, не позволяя ядрам урана-238 захватывать слишком много нейтронов, все же не полностью устраняло подобный захват. Он и был вторым (ас точки зрения производственной задачи — первым) основным процессом в реакторе. Захват нейтронов ядрами урана-238 превращал последний в конце концов в плутоний.

Предположим, что плутоний, который образуется в реакторе, используется в самом этом реакторе: он заменяет сгоревшее ядерное горючее, он делится, испускает новые нейтроны, и эти нейтроны частично попадают в ядра плутония и поддерживают цепную реакцию, а частично попадают в ядра урана-238 и превращают их в конце концов в новые ядра плутония.

Мы приходим к физической схеме, массовое практическое воплощение которой будет весьма радикальным переворотом в энергетике. Все дело в числе нейтронов, избыточных по отношению к необходимым для поддержания цепной реакции и создающих новое ядерное топливо. Плутоний создавался и раньше, в первых реакторах, где изготовлялись заряды атомных бомб. Он и был основной продукцией этих реакторов. Но плутоний не возвращался в реактор, не служил для пополнения ядерного горючего, не был таким горючим, не участвовал в управляемой реакции, не являлся источником энергии, базой атомной станции. Деление плутония не было управляемой цепной реакцией с постоянной скоростью, оно происходило в виде взрыва. Здесь полная аналогия с огнестрельным оружием (однократный акт выброса поршня) и тепловым поршневым двигателем (поступательно-возвратное движение поршня, поддерживающего повторяющееся расширение пара или газа).

Еще несколько слов об этой аналогии. Атомная бомба из плутония во время взрыва представляет собой чисто энергетический (производящий только энергию, а не атомное горючее) реактор на быстрых нейтронах. Разумеется, такое определение не менее условно, чем определение пушки как теплового двигателя: бомба — однократный реактор. Можно ли превратить его в управляемый реактор с постоянной отдачей энергии для производственного использования? Возможна ли атомная электростанция, в которой, нейтроны не замедляются?

Напомним, что замедление нейтронов было необходимо для поддержания цепной реакции. Без замедления нейтроны, образующиеся в природном уране при делении ядер урана-235, попадали бы в гораздо более многочисленные ядра урана-238 и захватывались этими ядрами без деления и дальнейшего образования нейтронов. Но если атомный реактор содержит только (или в очень большой мере) уран-235, то положение меняется. Теперь быстрые нейтроны уже не попадают в ядра урана-238 — последние отсутствуют или их очень мало в активной зоне реактора. Цепная реакция продолжается. При этом коэффициент воспроизводства нейтронов (вероятное число нейтронов, образующихся при делении, вызванном одним нейтроном) будет значительно большим, чем в случае медленных тепловых нейтронов. Но для управляемой реакции не нужны быстрое размножение нейтронов и соответственно охват делением увеличивающегося в геометрической прогрессии числа атомных ядер. Избыточного числа нейтронов хватит, чтобы возместить различные потери (поглощение нейтронов материалами, из которых сделано оборудование реактора, теплоносителем и т. п.) и, кроме того, чтобы часть нейтронов попала из активной зоны в окружающую уран-235 толщу природного урана и частично превратила преобладающий здесь уран-238 в уран-239, который превратится в нептуний, а затем в плутоний. Этот плутоний заменит находящийся в центральной активной зоне уран-235. Реактор сможет работать без нового, привносимого извне ядерного горючего — делящихся материалов. Более того, можно устроить так, чтобы число новых ядер плутония было больше, чем число разделившихся ядер урана-235 или ядер плутония,