Философия оптимизма — страница 38 из 74

ро растет, будут выбирать, да и сейчас уже выбирают варианты, гарантирующие наименьшие затраты. Такие варианты, видимо, охватят в качестве исходного сырья все или почти все элементы периодической системы.

При этом будут использоваться и многие бедные месторождения. Проблема относительного истощения сырьевых ресурсов, как уже говорилось, — энергетическая проблема. Переход к бедным месторождениям — это переход к большим затратам энергии на то же количество добываемого сырья. Изучение недр для поисков большинства содержащихся в них минералов, изучение, охватывающее все районы, меняет стиль информации «знаю где», приближает эту информацию к фундаментальным естественнонаучным знаниям.

Здесь мы сталкиваемся с одной из самых важных особенностей науки конца XX столетия. Энергетика атомного века использует процессы, происходящие в ядерных масштабах. Квантовая электроника использует частоты, приближающие исследователя к минимальным простран ственно-временным областям. Кибернетика еще далека от ядерных масштабов, но она уже использует процессы, происходящие в течение миллионных долей секунды, а будет использовать процессы, происходящие в течение миллиардных долей. Чем в меньшие пространственно-временные области проникает исследователь, чем в меньших пространственно-временных ячейках он находит и устанавливает негэнтропию, тем ближе он к проблемам, которые в это время представляются фундаментальными.

Но есть и другая сторона дела. Макроскопические закономерности, определяющие распределение элементов таблицы Менделеева в земной коре, с одной стороны, связаны с закономерностями космической химии, а с другой — с законами микромира. При детальном изучении недр (включая распределение редких элементов) отдельные точки месторождений соединяются в линии, полосы и районы и возникает геохимическая картина распределения минералов, тесно связанная с картиной их генезиса.

Но проблемы генезиса молекул и кристаллических решеток ведут исследователя к фундаментальным проблемам бытия.

В число основных проблем конца XX в. входит продовольственная проблема. Можно было бы сказать, что это проблема номер один, если бы такая характеристика не могла быть отнесена к проблемам энергетики, технологии, связи и множеству других. Воспользуемся случаем и отметим (чтобы еще вернуться к этому) полную непригодность присвоения иерархических званий отдельным элементам того глубоко комплексного преобразования, которое мы имеем в виду, когда говорим об атомном веке. В частности, нужно подчеркнуть связь между атомной энергетикой и продовольственной проблемой. Продовольственная проблема — это энергетическая проблема прежде всего потому, что производство искусственных удобрений — это энергоемкое производство. Искусственное орошение также требует больших затрат энергии. Заметим мимоходом, что получение и доставка пресной воды — энергетическая проблема. Резкое удешевление электроэнергии в конце столетия позволит поднять урожайность по меньшей мере вдвое за счет искусственных удобрений, расширить посевные площади за счет поливного земледелия и снабдить пресной водой далекие от рек населенные районы.

Вернемся к проблеме относительного истощения природных ресурсов в целом, к проблеме перехода к менее концентрированным средоточиям в пределах данного вида сырья, или данной формы использования почв, или данного вида энергии. Добыча менее богатых руд, эксплуатация более глубоких и менее мощных пластов угля, возделывание менее плодородных земель, постройка гидростанций на низких перепадах и аналогичные проявления относительного истощения ресурсов увеличивают удельные вложения и эксплуатационные расходы. Этот процесс будет перекрываться, а иногда вовсе устраняться техническим прогрессом и мелиорацией. Но есть одна сторона дела, тесно связанная с производством информации, которая требует специального внимания. Речь идет о стоимости информации «знаю как» и информации «знаю где».

Для почв и гидроресурсов информация «знаю где» не имеет решающего значения. Для руд значение этой информации больше, а для угля, нефти и газа еще больше.

По-видимому, до 2000 г., а скорее всего и позже снижение удельных расходов на информацию «знаю как» будет сопровождаться увеличением удельных расходов на информацию «знаю где». В последнем счете это объясняется принципиальным различием двух форм информации.

Информация о параметрах, операциях и режиме работы некоторой новой машины всегда имеет в качестве отправного пункта сравнительно точно известные начальные условия и программу. Нам заданы цели технологического процесса, некоторый спектр возможных видов сырья, а мы ищем среди принципиально допустимых схем наиболее эффективную, из допустимых конструктивных решений — оптимальное, из вариантов технологии — оптимальную технологию. Это информация о будущем, прогнозная информация об оптимальном режиме, конструкции и технологических операциях. Она дополняется экспериментом, испытаниями, опытом эксплуатации. Но всегда информация «знаю как» строится по схеме: «если заданы такие-то параметры, то прибор, станок, агрегат, цех, завод будут работать таким-то образом». Подобную схему можно реализовать с помощью кибернетического устройства, которое, получив в программе некоторые исходные параметры, будет перерабатывать информацию, получать варианты итоговых показателей, сравнивать их и находить оптимальный вариант. Таким образом, информация «знаю как» может быть основана на неэмпирической обратной связи, реализуемой в течение кратких интервалов времени.

Иная схема в случае информации «знаю где». Здесь нет ни программы переработки информации, ни исходных точных сведений. Распределение минералов в земной коре — это результат геологической и геохимической эволюции, о которой нам известно очень мало. Мы не знаем ни начального состояния Земли, ни современной геохимической и геологической структуры ее коры с той детальностью, которая позволила бы получить однозначные данные о средоточиях ископаемых. Информация об этих средоточиях — не совсем эмпирическая, довольно много известно о закономерностях совместного нахождения минералов, о структуре земной коры. Не исключено, что когда-нибудь станет возможным моделировать геологическую и геохимическую эволюцию, высчитать координаты месторождений, запасы и характеристики содержащихся в них полезных ископаемых. Мы к этому будем приближаться и когда-нибудь приблизимся. Но это еще очень долгосрочный прогноз.

Конструктор, технолог, испытатель машины, ищущий информацию «знаю как» о ее оптимальных параметрах и режиме, может очень далеко отстоять от лапласовского высшего разума, знающего координаты и скорости частиц Вселенной и предсказывающего все детали ее будущего. Он может располагать данными всего о тысячах деталей, о тысячах степеней свободы, о тысячах параметров, из которых складывается исходная информация. И при этой весьма ограниченной исходной информации он получит с помощью миллионов логико-математических операций точные сведения об оптимальных параметрах производственного процесса. В ином положении геохимик или геолог, который хочет получить информацию «знаю где». Он должен гораздо больше приблизиться к лапласовскому высшему разуму, причем последний уже знает, как распределены сейчас атомы Вселенной, а геологу еще нужно узнать это распределение, правда, не для всей Вселенной, а только для Земли. Эта задача принципиально разрешима, и мы можем представить себе вычислительную машину, выслушивающую информацию о результатах изысканий и однозначно указывающую наиболее вероятные координаты месторождений всех необходимых ископаемых. Но пока информация «знаю где» — еще весьма эмпирическая информация, она опирается на очень большие трудовые затраты и стоит очень дорого. Одной из задач технического прогресса в предстоящие десятилетия будет частичная замена информации «знаю где» информацией «знаю как». Пример такой замены в пределах нашего столетия — переход от урана к торию. Пример, может быть выходящий за пределы нашего столетия, — термоядерные реакции и использование дейтерия. В подобных случаях переход к новой технической схеме (иногда к новому физическому циклу) позволяет использовать ресурсы, о которых мы больше знаем, которым непосредственно не угрожает относительное истощение.

Таким образом, относительное истощение в большинстве случаев выражается в повышении стоимости информации «знаю где». Удельной информации — на весовую единицу или на киловатт-час энергии. Что же касается информации «знаю как», то здесь стоимость единицы информации упадет. Но зато вырастет объем информации. Информация по стоимости, т. е. по овеществленному в пей труду, становится сопоставимой с основными отраслями народного хозяйства. Она входит в основную схему распределения труда, в основную структуру производства.

Перейдем к вопросу об этой структуре и ее динамике.

Два потока информации, о которых шла речь, — поток информации «знаю как» и поток информации «знаю где» — не содержат ответа на один кардинальный вопрос. На вопрос «зачем?» Зачем нужно получать информацию, зачем нужно переходить к новым конструкциям и процессам, зачем нужно искать и осваивать новые источники и новые средоточия энергии и сырья? Этот вопрос совсем не метафизический. Это очень важная (практически важная) экономическая составляющая вопроса о смысле жизни человечества, о смысле его эволюции, о смысле цивилизации и прогресса. В заключительной главе этой книги мы подойдем несколько ближе к этому более общему вопросу. Сейчас нам нужен ответ на вопрос «зачем?» применительно к темпам и направлениям научно-технического прогресса. Без этого нельзя говорить об оптимизации производства и о его оптимальной динамике.

Когда речь идет об оптимальной конструкции или оптимальном технологическом процессе, т. е. о системе геометрических, физических, технических и экономических величин (о расстояниях, интервалах времени, массах, энергиях, скоростях, ускорениях, напряжениях, температурах, давлениях, удельных расходах и т. д.), ни одна из этих величин не фигурирует в качестве целевой нормы, к максимальному значению которой стремится конструктор. Максимальное значение должна приобрести какая-то итоговая функция этих величин. Ее максимальному значению соответствуют их оптимальные значения, оптимальная технология. Вопрос «зачем?», от которого неотделима трудовая, целесообразная деятельность человека, решается здесь как вариационная задача нахождения максимального или минимального значения целевой нормы. Новая конструкция вводится, чтобы получить наибольший коэффициент полезного действия при заданных затратах или наибольшую скорость (ускорение, грузоподъемность) на единицу мощности и т. д. В общей форме целевой нормой является возрастание негэнтропии при компенсирующем возрастании энтропии.