и, окажутся структурами, состоящими из меньших частиц. Скорее, их различия предстанут перед нами как выражение различных по характеру и интенсивности связей с другими частицами, может быть, с Вселенной в целом.
В середине нашего столетия исследование космических лучей и потоков частиц высокой энергии, которую они приобрели в ускорителях, привело к значительному расширению сведений об элементарных частицах. Дело не только в том, что увеличилось число известных нам типов элементарных частиц. Это увеличение ставит перед наукой весьма фундаментальные вопросы. Они еще далеко не решены, и современный физик с двойственным чувством воспринимает быстрое расширение таблицы элементарных частиц, даже с более сложным, чем двойственное. С одной стороны, налицо почти непрерывное расширение представлений о кирпичах мироздания, т. е. фундаментальных знаний. Открытия в этой области, которые когда-то были поворотными вехами, открывавшими новые эпохи в науке или во всяком случае длительные периоды (таким было открытие первых ставших известными элементарных частиц — электрона, протона, фотона), следуют сейчас с большой частотой. Отчасти обнадеживающей и вместе с тем (в этом состоит вторая сторона дела) пугающей. Потому что чем больше различных по типу элементарных частиц, тем, по-видимому, дальше не только классический идеал — объяснение мироздания движением частиц гомогенной материи, но вообще объяснение мироздания движением его элементарных «кирпичей».
Но в данном случае есть и третья сторона дела, третья компонента того ощущения, которое индуцируется потоком все новых типов элементарных частиц. Скажем в скобках, что эти «компоненты ощущения» являются по существу прогнозами дальнейшего развития теории элементарных частиц. Так вот, третья компонента состоит в подозрении, что образ кирпичей не подходит, что мироздание не состоит из «кирпичей».
Задача настоящей главы — проиллюстрировать некоторыми условными гипотезами эту компоненту, этот прогноз дальнейшего развития науки. Речь идет не столько о физических гипотезах, сколько об историкофизических; они относятся не к предполагаемой структуре мира, а к предполагаемому появлению и развитию физических концепций. Разумеется, эти концепции в какой-то мере описывают реальную структуру мира, но все же высказанная только что оговорка имеет некоторый смысл: конкретная, историко-физическая гипотеза может быть весьма условной и тем не менее иллюстрировать действительную, уже наметившуюся тенденцию научной мысли. Здесь мы попытаемся выяснить, возможна ли такая дальнейшая эволюция фундаментальных исследований, которая не только увеличит или уменьшит число кирпичей мироздания, но и откажется от этого понятия как исходного.
Именно таким исходным понятием были кирпичи мироздания, постулировавшиеся классической наукой, включая и ее античные атомистические прообразы, и те классические конструкции, которые фигурируют в современной науке. Атомы Демокрита и их позднейшие модификации, принадлежащие Гассенди и другим мыслителям нового времени, непроницаемые тела картезианской физики, динамические центры Бошковича, заряды, фигурирующие в картине электромагнитного поля, элементарные частицы, если игнорировать их аннигиляции и порождения, — все эти конструкции отвечали на вопрос о поведении элементов бытия, а не об их существовании.
Есть основания думать, что весьма общей тенденцией дальнейшего развития науки будет уже наметившаяся тенденция, направленная к объяснению существования эмпирически наблюдаемых типов элементарных частиц, к объяснению, почему они обладают именно такими, а не иными массами и зарядами — свойствами, отличающими один тип частиц от другого.
Мы подойдем к проблеме существования частиц, обратив внимание прежде всего на массу и заряд частицы каждого типа. Игнорируя эти свойства, мы не можем отличить частицу от точки, в которой она находится в данный момент. Изменения заряда и массы — это трансмутация частицы, превращение частицы одного типа в частицу другого типа. Превращения электронно-позитронных пар в фотоны или фотонов в электронно-позитронные пары не сводятся к переходу из одной мировой точки в другую, эти процессы выпадают из картины движущихся тождественных себе частиц. Трансмутации выпадают из стиля классической физики, которая мыслила о природе с помощью пространственно-временных моделей поведения неуничтожаемых частиц. Наука возвращается к эпикурейскому представлению, изложенному Александром Афродизийским: в очень малых областях нет движения, а только «результат движения», смещение как результат аннигиляций и порождений частицы данного типа. Но слово «возвращение» не нужно понимать как повторение. Науке не нужны ни модернизация старого, ни архаизация нового. Возвращаясь назад, наука подбирает не ответы, а вопросы и отвечает на старые вопросы по-новому.
Новые возможности, позволяющие ответить на вопрос, заданный два с лишним тысячелетия назад, состоят в наблюдении сильных взаимодействий и манипулировании этими сильными взаимодействиями.
В современной физике существует представление об иерархии все более сильных взаимодействий. Мы можем здесь ограничиться двумя звеньями этой иерархии, которая начинается ультраслабым, гравитационным взаимодействием, после которого идет слабое, затем электромагнитное и, наконец, сильное взаимодействие. Электромагнитное взаимодействие — это взаимодействие всех электрически заряженных частиц с электромагнитным полем, т. е. с фотонами. Его интенсивность характеризуется неким числом V137, о природе которого было высказано немало противоречивых суждений, не приведших пока к отчетливому представлению. Мы можем приблизиться к некоторому первоначальному и совсем не строгому представлению, если будем считать это число мерой «некартезианских» эффектов взаимодействия, т. е. эффектов, несводимых к изменению поведения тождественных себе частиц. Чем больше константа, измеряющая интенсивность взаимодействия, тем меньшее время охватывает это взаимодействие и тем больше вероятность того, что оно вызовет не изменение поведения частицы, а ее превращение в частицу другого типа. Константа, характеризующая электромагнитное взаимодействие, мала. Поэтому электромагнитное взаимодействие сравнительно редко (по сравнению с сильным взаимодействием и при не очень больших энергиях взаимодействующих частиц) приводит к трансмутациям. Сильное взаимодействие характеризуется во много раз большей константой, оно происходит в течение интервала времени порядка 10-23 сек (т. е. в миллионы раз быстрее, чем электромагнитное взаимодействие, занимающее время порядка 10-15—10-17 сек) и приводит к трансмутационным актам.
Эти акты происходят, вообще говоря, когда частицы обладают очень высокими энергиями, т. е. движутся с высокими скоростями. Поэтому изучение трансмутаций частиц требует, чтобы взаимодействующим частицам придавали большие скорости. Трансмутационные акты могут происходить и в случае электромагнитного взаимодействия: если фотоны обладают высокой энергией (превышающей энергию массы покоя электрона и позитрона вместе взятых), то, несмотря на небольшое значение постоянной V137, фотоны будут превращаться в электроннопозитронные пары. Здесь соотношения теории относительности приводят не только к необходимости учитывать некоторое изменение массы, зависящее от скорости частицы. Здесь масса, соответствующая кинетической энергии, становится одного порядка и даже больше массы покоя новых частиц и переходит в массу покоя., Для возникновения новых частиц требуется, чтобы энергия имеющихся частиц превысила энергию покоя генерируемых частиц, пропорциональную их массе покоя.
Подобные процессы выходят за рамки теории относительности как учения о мировых линиях тождественных себе тел. Эти процессы следует назвать уже не релятивистскими, а ультрарелятивистскими. Переход из релятивистского мира в ультрарелятивистский — это переход от поведения тождественных себе частиц того или иного типа к существованию частицы данного типа, ее возникновению или уничтожению, т. е. к трансмутации частицы иного типа в частицу данного типа или частицы данного типа в частицу иного типа.
Это весьма радикальный переход. Если бы существование элементарной частицы данного типа объяснялось группировкой каких-то субчастиц, то перед нами оказалось бы еще одно звено классической атомистики. Существование молекулы объясняется группировкой атомов, существование атома — группировкой элементарных частиц, а теперь существование частицы — группировкой субчастиц. Все это — структурные объяснения, сводящие существование галактики, планетной системы, звезды, молекулы, атома к внутренней структуре. Структура может быть классически статической (совокупность пространственных расстояний между точно определенными в каждый момент положениями тел, составляющих данную систему); она может быть релятивистской (совокупность четырехмерных интервалов); динамической (совокупность сил, действующих между элементами); квантовой (расстояния между элементами нельзя точно определить, они определены тем менее точно, чем точнее определены взаимодействия и импульс частиц). Но, когда речь идет об элементарной частице, ее существование не сводится к внутренней структуре.
Может быть, его можно объяснить, апеллируя к сочетанию взаимодействующих частиц большей массы. В 1964 г. Гелл-Манн и одновременно с ним Цвейг высказали предположение о неких частицах очень большой массы, которые получили название кварков по имени фантастических существ из романа Джойса «Пробуждение Финнегана». Каждая из частиц, вступающих в сильные взаимодействия (таково подавляющее большинство частиц), состоит из трех кварков. Как же получается, что масса такой частицы во много раз меньше, чем масса составляющих ее кварков? Дело объясняется уже знакомым нам дефектом массы. При образовании частицы из кварков выделяется очень большая энергия и соответственно такая составная частица обладает массой, во много раз меньшей, чем масса составивших ее кварков. Если гипотеза кварков соответствует действительности, то кварки должны встречаться в свободном состоянии, хотя и очень редко. Большинство их уже «выгорело», т. е. они соединились в системы из трех кварков — известные нам частицы с различной, но всегда значительно меньшей, чем у кварков, массой.