.
Новые звезды вспыхивают часто — около ста в год в Галактике, а сверхновые появляются в больших галактиках в среднем раз в течение столетия. В нашей Галактике последняя вспышка сверхновой произошла в 1604 г. Теперь, когда можно наблюдать множество галактик (причем воспринимать и измерять не только оптическое излучение), накопилось довольно много наблюдений, проливающих свет на природу вспышек сверхновых. Можно думать, что сверхновые возникают иногда из звезд, претерпевших уже длительную эволюцию, а иногда из молодых весьма массивных звезд, превышающих вдвое и больше массу Солнца. Они образуют при взрыве газовые туманности, отличающиеся высокой радиоактивностью и мощным оптическим и рентгеновским излучением. В. Л. Гинзбург и И. С. Шкловский считают вспышки сверхновых основным источником космических лучей. Проблема происхождения космических лучей — одна из основных астрофизических проблем, решение которых должно быть запроектировано на конец столетия. В этом отношении внеземные наблюдения с космических кораблей, с поверхности Луны и планет земной группы позволят точнее определить состав первичных космических лучей, не измененный взаимодействием с земной атмосферой.
Природа сверхновых еще далеко не выяснена, и то, что сейчас о ней говорят, представляет собой лишь первоначальные гипотезы, иллюстрирующие характер астрофизических проблем, которые будут решаться в конце столетия. Возможно, в течение этого времени будет подтверждена мысль о взрыве, вызванном гравитационным сжатием под действием сил, соответствующих эйнштейновскому закону тяготения. Эта мысль очень характерна для современной астрофизики, ее тенденций и перспектив.
Мы уже говорили о «белых карликах», т. е. сравнительно устойчивых финальных состояниях звезд с массой не больше 1,2 массы Солнца. У звезд с большей массой давление электронного газа недостаточно, чтобы противостоять гравитационному сжатию, последнее продолжается, и звезда уменьшается до размеров порядка 10 км, приобретая фантастическую плотность, превышающую плотность атомного ядра, т. е. 100 млн. тонн в кубическом сантиметре. При такой плотности свободные электроны присоединяются к протонам, протоны захватывают их, превращаясь в нейтроны, и звезда оказывается состоящей из тесно сдавленных нейтронов. В сверхплотном состоянии уже не существует сложных атомных ядер. Зато здесь могут существовать элементарные частицы тяжелее нуклонов; эти частицы не распадаются при столь высокой плотности.
До определенных пределов упругость сверхплотного вещества может противостоять дальнейшему гравитационному сжатию. Если нейтронная звезда не превышала своей массой двух масс Солнца или потеряла избыточную массу, она будет постепенно остывать. Существование нейтронных звезд пока не доказано. В прогнозы астрофизики, в число предстоящих возможных открытий входит открытие нейтронных звезд при наблюдении нейтрино, т. е. незаряженных частиц с нулевой массой покоя, излучение которых должно сопровождать гипотетические реакции в этих звездах. Быть может, нейтронные звезды будут обнаружены по их рентгеновскому излучению. Быть может, они уже обнаружены?
Нейтронная звезда, масса которой не превышает двух масс Солнца, переходит в число остывающих и затем остывших звезд, и это — финал ее эволюции. Но, если масса звезды после нарушения равновесия между упругостью, обязанной ядерным реакциям, и гравитационным сжатием будет больше указанной величины, упругость уплотненного и нейтронизированного вещества не может остановить гравитационное сжатие, которое в этом случае приобретает характер космической катастрофы. Катастрофически быстрое сжатие называется гравитационным коллапсом. Этот термин нам уже знаком, гравитационный коллапс упоминался в связи с гипотезой максимонов. Речь идет о сжатии звезды под влиянием гравитационных сил, растущих соответственно эйнштейновскому закону тяготения. Согласно закону Ньютона тяготение неограниченно возрастает, когда расстояние между телами стремится к нулю. На поверхности звезды гравитационные силы стремятся к бесконечности, когда звезда стягивается в точку, т. е. размеры ее приближаются к нулю. Согласно закону Эйнштейна силы тяготения стремятся к бесконечности, когда радиус звезды приближается к определенной величине, пропорциональной ее массе. Для Солнца или другой звезды с той же массой такой радиус равен трем [90] километрам. Здесь, на таком расстоянии от центра звезды, гравитационные силы становятся бесконечными, и скорость сближающихся под влиянием этих сил частиц становится равной скорости света. Из теории относительности вытекает для этого случая крайне парадоксальная картина. Казалось бы, тело, движущееся в таком гравитационном поле, пройдет громадное расстояние в течение краткого мига. Но этот «краткий миг» в теории относительности теряет абсолютный смысл. Выражение «краткий миг» имеет смысл для системы отсчета, укрепленной на самой звезде. Для других систем, например для нашей земной системы отсчета, этот миг становится все большим интервалом времени, по мере того как происходит сжатие, и, когда оно доводит звезду до упомянутого критического радиуса, миг растягивается бесконечно.
Общая теория относительности рассматривает тяготение как изменение пространственно-временной метрики. Чем больше в данной точке напряженность гравитационного поля, тем больше изменяется метрика, тем больше становится измеренная в этой точке секунда, если перейти к другой системе координат и измерить эту секунду там. То, что в системе звезды длится секунду, в другой системе координат оказывается часом, веком, тысячелетием, миллиардом лет. А при сжатии звезды до указанного выше критического радиуса любой временной интервал становится в иной, свободной от такого сильного гравитационного поля, системе отсчета бесконечным. Возрастание временных интервалов в гравитационном поле выражается, в частности, в возрастании периода электромагнитных колебаний и соответственно в увеличении длины электромагнитных волн, в красном смещении спектральных линий. Гравитационное поле, соответствующее сжатию звезды до критического радиуса (пропорционального, как уже говорилось, массе звезды и для массы Солнца составляющего 3 км), превращает периоды электромагнитных колебаний в бесконечные. Это значит, что электромагнитное излучение прекращается. Прекращается всякое излучение. Коллапсирующая звезда связана с другими телами только тяготением. Звезда падает, по выражению Я. Б. Зельдовича, в гравитационную могилу.
Гравитационный коллапс принадлежит к числу процессов, принципиально отличающихся от обычных релятивистских процессов (здесь слово «обычные» означает «сравнительно известные науке, служащие основным объектом исследования и практически применяемые»). Эти обычные релятивистские процессы требуют для своего описания учета соотношений теории относительности потому, что выделяющиеся и поглощаемые энергии сопоставимы с массами покоя частиц, умноженными на квадрат скорости света. Ультрарелятивистские процессы начиная с открытых в начале 30-х годов аннигиляций и порождений электронно-позитронных пар связаны с поглощением и выделением энергии порядка массы покоя, умноженной на квадрат скорости света. Изучение подобных процессов приближает науку к решению наиболее фундаментальных для нашего времени проблем de rerum natura, приближает практическое применение этих процессов и переход к ультрарелятивистской цивилизации — воплощению субъядерной физики.
В отличие от обычной (в указанном выше смысле) эволюции звезд на главной последовательности, где гравитационное сжатие уравновешивается термоядерными и вообще ядерными реакциями, дебюты и финалы жизни звезд приближаются к полной реализации уравнения Е = mс2, т. е. к полному превращению энергии покоя в энергию излучения. В условиях сверхвысоких давлений, при плотности, большей, чем плотность атомного ядра, при концентрации всей массы звезды в сфере радиусом несколько километров, при бесконечной (для внешнего наблюдателя) длине излучаемых волн, в этом мире коллапсирующей звезды происходят какие-то пока неясные процессы в субъядерных масштабах. Картина этих процессов не может быть нарисована, если ограничиваться специальной теорией относительности. Здесь тяготение вторгается в микромир. При колоссальной плотности вещества, при встречающихся только здесь, в коллапсирующих звездах, малых расстояниях между частицами гравитационные, т. е. ультраслабые в обычных масштабах атомной физики, взаимодействия становятся весьма интенсивными. Поэтому для понимания таких процессов необходим некоторый синтез квантовой физики микромира и общей теории относительности, т. е. современной теории тяготения.
Таким образом, конечная судьба звезд в основном зависит от их массы: звезды с массой, меньшей, чем 1,2 массы Солнца, становятся белыми карликами; звезды с массой, равной от 1,2 до 2 масс Солнца, превращаются в нейтронные звезды; звезды с массой, больше чем в два раза превышающей массу Солнца, коллапсируют и попадают в «гравитационную могилу». В процессе эволюции возможны потери оболочки, уменьшение массы и соответственное изменение конечной судьбы. Характерная особенность современной астрономии и астрофизики — тесная связь проблем звездной эволюции с проблемами эволюции галактик. Звезды образуются из межзвездного вещества, и оно же является источником пополнения звездного вещества во время катаклизмов, срывающих звездные оболочки. Но эта схема приводит к заключению об убывающем количестве межзвездного вещества в Галактике. Часть его остается в устойчивых карликах, завершающих главную последовательность, другая часть — в медленно эволюционирующих звездах, не превышающих своей массой 1,2 массы Солнца и не успевших за время существования Галактики завершить свою эволюцию. Это — перый вывод о балансе Галактики из схемы звездной эволюции. Он относится к распределению вещества между звездами и межзвездным, газом. Далее, из схемы эволюции звезд вытекает проблема генезиса тяжелых ядер. Первоначальный запас водорода постепенно расходуется на образование гелия. Из гелия образуются кислород и углерод. Но на некотором этапе дальнейшее нарастание нуклонов в ядрах приостанавливается, так как новые ядра оказываются нестабильными и распадаются раньше, чем к ним присоединяются новые нуклоны. Можно предположить, что при взрывах, которые мы называем вспышками сверхновых, положение иное. При происходящих здесь цепных реакциях появляются многочисленные нейтроны, которые захватываются ядрами до их распада. Эти ядра после захвата нейтронов становятся устойчивыми, и рост числа нуклонов, т. е. переход к более тяжелым элементам, происходит беспрепятственно вплоть до элементов, находящихся в самом конце таблицы Менделеева. При вспышках сверхновых тяжелые ядра проникают в межзвездный газ и далее, в образующиеся из него звезды второго поколения.