Философия оптимизма — страница 52 из 74

Вырисовывается следующая картина происхождения Галактики — событий, происходивших 10–15 млрд, лет назад. Первоначальное плазменное облако, состоявшее в основном (может быть, и полностью) из протонов и электронов, сжималось под влиянием тяготения. Конденсация первичного облака происходила неравномерно, образовывались локальные сгущения, из которых потом образовались звездные скопления, и еще меньшие сгущения в пределах этих первых сгущений — будущие звезды первого поколения. Облако стало протогалактикой. Она вращалась, это препятствовало гравитационной концентрации всей плазмы в центре, она сосредоточивалась в плоскости, перпендикулярной к оси вращения.

Современной астрономии известны явления, которые требуют для своего объяснения дальнейшего анализа эволюции Галактики. Есть основания думать, что постепенный переход от первичного протонно-электронного облака к протогалактике и затем к звездной Галактике прерывается, а может быть, начинается мощными, несравненно более мощными, чем вспышки сверхновых, взрывами в ядрах галактик. Помимо туманностей в составе нашей Галактики, обязанных вспышкам сверхновых и обладающих очень сильным радиоизлучением, существуют очень далекие от нас галактики с сильным радиоизлучением. Можно думать, что эти радиогалактики возникли из астрономических объектов, подобных тем, которые недавно открыты на границах известной нам части Вселенной. Они называются сверхзвездами, квазизвездными объектами, квазизвездами или квазарами. По красному смещению и, следовательно, по скорости удаления от нас можно определить расстояние до квазаров и, сопоставив это расстояние с видимой яркостью, оценить их светимость. Красное смещение здесь очень велико, длина волны увеличена в несколько раз. Отсюда можно заключить, что свет от квазаров, который доходит к нам сейчас, был излучен несколько миллиардов лет назад. Нынешний квазар, если он сейчас существует, можно будет увидеть па Земле через миллиарды лет, если к тому времени еще будут существовать Земля, Солнечная система в целом и наша Галактика.

Что собой представляет квазар — пока неизвестно. Светимость его, если принять во внимание наблюдаемую яркость и колоссальное расстояние, в сто раз превышает светимость самой крупной из известных нам галактик. Источником такой энергии могут быть гравитационное сжатие или термоядерные реакции (высказывались предположения о цепной реакции вспышек сверхновых, а также о взрыве образовавшегося в ядре галактики массивного газового шара — звезды, в несколько миллионов раз большей, чем Солнце).

Чем дальше от нас та или иная галактика, тем с большей скоростью она удаляется и тем больше ее красное смещение. Это уменьшает видимую яркость далеких галактик. Такое ослабление яркости в известных пределах компенсируется сооружением очень мощных телескопов оптического, инфракрасного и радиодиапазона и в будущем размещением таких телескопов на искусственных спутниках и на Луне. В более отдаленном будущем они будут расположены и на планетах земной группы, и на спутниках этих планет. Можно быть уверенными, что в течение десятилетий, отделяющих нас от 2000 г., будут открыты еще более далекие объекты, может быть более крупные и более загадочные, чем квазары.

В 1967 г. были открыты объекты, по-видимому не такие крупные и не такие далекие, как квазары, но действительно более загадочные. В 1967 г. обнаружили исходящие из одной области неба весьма правильно повторяющиеся импульсы радиоизлучения. Позже было открыто несколько десятков источников подобного излучения. Первоначальная мысль о внеземных цивилизациях была быстро оставлена, и сейчас склоняются к мысли, что пульсары (так назвали эти источники излучения) представляют собой уже известные нам нейтронные звезды, состоящие из плотно спрессованных нейтронов и обладающие плотностью, близкой к плотности атомного ядра. Краткий и весьма содержательный рассказ о пульсарах читатель найдет в статье И. С. Шкловского «Пульсары» в сборнике «Будущее науки»[91].

Далекие астрономические объекты находятся на больших расстояниях от нас, но мы изучаем их такими, какими они были миллиарды лет назад, когда они послали нам лучи, достигшие Земли сейчас. Поэтому наблюдения над квазарами могут привести к очень радикальным космогоническим выводам, к новым представлениям об эволюции Вселенной. Здесь можно видеть характерную особенность научных прогнозов. Перечисление астрономических и астрофизических проблем (эволюция звезд, нейтронные звезды, пульсары, сверхновые, коллапс, происхождение космических лучей, природа квазаров) представляет собой по существу схему прогноза на ближайшие десятилетия: мы предполагаем, что в этот период будут в какой-то мере решены проблемы, поставленные открытием сверхновых, квазаров и т. п. В современной астрофизике почти каждое обобщение, почти каждая новая концепция и почти каждый крупный результат наблюдения представляют собой не только гипотетическую констатацию, относящуюся к структуре мироздания, но тем самым и гипотетическое предположение о таком развитии астрофизики и астрономии, которое подтвердит и конкретизирует высказанную гипотезу или же заставит отказаться от нее. Поэтому перечисление проблем и гипотез в современной астрофизике и астрономии представляет собой некоторый схематический прогноз развития самой науки.

Этот прогноз исходит из уже сделанных наблюдений, уже высказанных концепций и уже сформулированных проблем. Вместе с тем любой прогноз в этой области включает неизбежность новых наблюдений и принципиально новых результатов. Подобная неизбежность является самой достоверной компонентой прогноза, хотя она и не допускает конкретной расшифровки. Ведь мы только вошли в эпоху внеземных наблюдений и изучения неоптических диапазонов. Новые наблюдения неизбежно поставят новые проблемы и изменят развитие астрофизики и астрономии.

Мы еще раз убеждаемся, что научный прогноз представляет собой в общем случае касательную к реальной кривой, касательную, показывающую направление кривой, которое в следующий момент может измениться. Это нисколько не уменьшает значения прогнозов — ни теоретического, ни практического. В современной науке гипотеза больше, чем когда-либо, является условием прогноза достоверных позитивных знаний. В физике элементарных частиц современный период — это период продумывания вопросов, которые будут заданы природе с помощью нового поколения ускорителей. В астрофизике современный период требует продумывания вопросов, которые будут заданы природе с помощью телескопов и астрофизических приемников излучений на спутниках, на Луне и впоследствии на планетах земной группы. Во многом эти вопросы теории элементарных частиц и вопросы астрофизики совпадают. Но и те и другие подготовляются в виде физических и астрофизических гипотез, которые вместе с тем служат неоднозначными прогнозами развития науки. Что касается практического эффекта этих гипотез и прогнозов, то они повышают интеллектуальный потенциал науки, и это сказывается количественно неопределимым, но несомненным ускорением прогресса цивилизации.

Для повышения интеллектуального потенциала науки большое значение имеет неизбежная апелляция к общим космологическим гипотезам при разработке крупных частных астрономических и астрофизических проблем. Из большого числа кардинальных вопросов о структуре и эволюции Вселенной в целом мы рассмотрим вопросы: 1) об однородности Вселенной, 2) о ее конечности или бесконечности, 3) о расширении Вселенной, 4) о ее состоянии до расширения и 5) о симметрии или дисимметрии Вселенной в смысле равного или неравного содержания частиц и античастиц.

Первый взгляд на небосвод обнаруживает неоднородное распределение масс. В звездах вещество резко отличается по плотности от межзвездной среды. Звезды сгруппированы в галактики, где средняя плотность, естественно, больше, чем в межгалактических пространствах. Солнце входит в Галактику, состоящую из ста миллиардов звезд. Дальше идут беззвездные пространства и за ними новые галактики, разделенные расстояниями в 1–5 млн. световых лет. Охватывая еще большие пространства, обнаруживают скопления, состоящие из десятков или сотен галактик. Но более крупных структурных единиц мы не обнаруживаем. Поэтому допустимо предположить, что Вселенная, взятая в масштабах, которые мы охватываем телескопом, однородна. Переходя ко все большим масштабам, мы получаем в пределе одну и ту же плотность материи, с какой бы точки мы ни наблюдали звездное небо. Для сферы радиусом около 3 млрд, световых лет, где находятся сотни миллионов галактик, средняя плотность приближается к 10-30 г в кубическом сантиметре. Мы можем рассматривать находящуюся в этих пределах материю как некий космический однородный субстрат, игнорируя локальные неоднородности вплоть до скоплений галактик. Расстояния между такими скоплениями становятся очень малыми по сравнению со сферой, охватывающей известную нам часть Вселенной. Мы можем предположить, что Вселенпая однородна и дальше, в пространствах, которые пока еще недоступны телескопу.

Существует некоторый «оптический горизонт», за который мы сейчас еще не можем заглянуть, потому что находящиеся там объекты (если несколько упростить картину) удаляются от нас со скоростью света, красное смещёние становится при этом бесконечным и эти объекты невидимы. Но на значительно меньших расстояниях постулат однородности Вселенной является вопросом, который может быть подтвержден наблюдениями. Объем исследованной Вселенной, для которого ее однородность подтверждается наблюдением, зависит (в указанных пределах) от мощности телескопов, от их размещения вне земной атмосферы и от возможности улавливать все диапазоны электромагнитных волн и все виды космических излучений, иными словами, от хода новой астрономической революции. Но от нее зависят, как мы сейчас увидим, ответы и на другие основные космологические вопросы.

К ним относится и вопрос о конечности или бесконечности Вселенной. Здесь нам нужно вернуться к ранее сделанным беглым замечаниям об общей