В наше время (в широких масштабах — в прогнозируемый период, охватывающий конец столетия) квантовая электроника позволяет доводить энергию переменного электромагнитного поля непосредственно до объекта технологического воздействия, и в растущем ряде операций это делает ненужным превращение электрической энергии в механическую с помощью электродвигателя или в тепловую с помощью электрической печи. Непосредственное воздействие фотонов может происходить даже на молекулярном уровне.
Но генерирование энергии пока не миниатюризуется. Она концентрируется в лазерах, но при этом требуются электрические передачи, питающие первичные источники излучения, концентрируемого лазером. При использовании аннигиляционной энергии сам источник питания миниатюризуется. Мы можем сосредоточить в приборе величиной в несколько кубических миллиметров энергию порядка десятков тысяч киловатт-часов, не подводя к этому прибору проводов или оптических передатчиков энергии.
В природе мы встречаем два рода процессов, о которых уже шла речь в главе об информации. Первые процессы — выоокоэнергетические. Они характеризуются поглощением и выделением больших количеств энергии при сравнительно небольших приращениях энтропии и негэнтропии. Таковы подъем и падение воды при ее кругообороте, накопление, энергии в хлорофилле и выделение при сгорании топлива, а также все другие процессы, использующие энергию Солнца в макроскопических масштабах. Классическая энергетика представляет собой использование этих процессов. К ним, с некоторыми оговорками, можно присоединить и освобождение ядерной энергии, хотя этот процесс сопровождается гораздо большим изменением энтропии и, кроме того, не связан с Солнцем.
Другого рода процессы можно назвать высокоэнтропийными. Они состоят в значительных изменениях энтропии и соответственно негэнтропии при очень небольших преобразованиях и передачах энергии. Пример таких процессов, принадлежащий Дж. Томсону, уже приводился в главе об информации — раскладка в определенном порядке колоды карт, требующая меньше энергии, чем ее выделяется при сгорании одной молекулы парафина.
Высокоэнтропийные процессы в природе сосредоточены в молекулах ДНК и РНК в мозгу высших животных (наибольшая концентрация негэнтропии — в мозгу человека). В технике они имеют место в кибернетических устройствах и в различных видах связи. Высокоэнтропийные процессы — это процессы преобразования и передачи информации. Если взять производство в целом, то в нем высокоэнтропийные процессы в мозгу человека или в имитирующих его кибернетичеких устройствах управляют высокоэнергетическими процессами. Они выполняют роль отправителя грузов, который пишет адреса на вагонах, скажем, с углем, перевозимым к станциям. Надписывание этих адресов требует малой энергии, содержит большую информацию и позволяет создать большую негэн-тропию. Но создание последней только инициируется надписыванием адресов, реализуется негэнтропия при наличии подчиненных этим адресам действительных перевозок.
Теперь представим себе, что топливом служит не уголь, а вещество, содержащее в кубическом сантиметре столько же калорий, сколько их содержится в целом угольном составе. Затрата энергии на пересылку этих кубиков ненамного превышает затрату энергии на составление адресов и отправку накладных. Мы начинаем понимать, что миниатюризация энергетических трансформаций и передач с помощью сверхъемких аккумуляторов меняет соотношение между информацией и энергетикой, между высокоэнтропийными и высокоэнергетическими процессами.
Это не значит, что миниатюризованная энергетика может стать автоматической без управляющих ею высокоэнтропийных процессов. Пожалуй, рассылка накладных и наклейка адресов на энергетические грузы станут ненужными, эти грузы можно будет доставлять вместо накладных. Реализация негэнтропийной информации становится почти такой же легкой, как и ее получение. Но в общем случае составление длинных сложных высокоэнтропийных информационных цепей должно быть отделено от высокоэнергетических процессов. Эти цепи позволяют до высокоэнергетических процессов провести множество расчетов и выбрать оптимальную схему высокоэнергетических процессов. Однако выбор оптимальной схемы может при применении сверхъемких аккумуляторов включать высокоэнергетические процессы. Кибернетическое устройство в случае слишком большой сложности высокоэнтропийного (с небольшими энергиями) моделирования способно вызвать высокоэнергетнческий процесс, оценить его результат и, исходя из этого результата, прийти к определенному оптимальному решению. Таким образом, кибернетическое устройство будет включать экспериментирующие блоки. Вообще кибернетический механизм как чисто высокоэнтропийный, включающий или выключающий те или иные высокоэнергетические установки, будет дополнен кибернетическим механизмом с вмонтированными в него сверхъемкими высокоэнергетическими аккумуляторами.
Последние будут, вероятно, монтироваться в схемы, имитирующие мышцы. В главе о молекулярной биологии говорилось о силовых установках, состоящих из искусственных полимеров, обладающих двигательными реакциями. Наличие в искусственной мышце аккумулятора, практически нб требующего перезарядки в течение десятилетий и даже столетий, сделает такие механизмы независимыми от внешнего энергетического питания. Миниатюрность этих аккумуляторов, их миллиметровые и даже меньшие размеры позволят иметь в механизме сложную систему независимых одна от другой мышц, связанных каждая с системой искусственных рецепторов. Их могут быть сотни или тысячи в одном полимерноаккумуляторном «организме». Сложность его функций будет практически неограниченной.
Для медицины и физиологических исследований будет весьма эффективным включение в живые организмы аккумуляторов, действующих в течение десятилетий и создающих в организме большую согласованную систему электрических, тепловых и механических (искусственное сердце, искусственные легкие) эффектов.
Можно было бы сколь угодно долго наращивать перечень возможных применений сверхъемких аккумуляторов. Это функция фантазии. Но в этой книге фантазии отводится скромная роль. Она ограничивается конструированием условных иллюстраций тех прогнозов, которые логически вытекают из современных тенденций науки и позволяют определить эвентуальный эффект этих тенденций. Все сказанное о сверхъемких аккумуляторах — лишь иллюстрация реальной тенденции современной физики элементарных частиц. Современная физика элементарных частиц позволяет увеличивать негэнтропию в природе на уровне пространственно-временных ячеек порядка 10-13 см и 10-24 сек. В этих ячейках (может быть, на несколько порядков меньших) происходят, вероятно, не непрерывные движения, подчиненные релятивистской причинности, а трансмутации, т. е. изменения не поведения, а существования частиц различного типа. На этом уровне негэнтропия может возрастать в наиболее удобной для практического использования форме при образовании антивещества.
Но вовсе не очевидно, что негэнтропия на уровне все меньших пространственно-временных областей означает переход цивилизации на более высокий уровень. Термины «релятивистская цивилизация» или «атомная цивилизация», так же как термины «ультрарелятивистская» или «послеатомная» цивилизация, соответствуют такому представлению о негэнтропии и цивилизации. Насколько законно это представление?
Понятие цивилизации неотделимо от понятия ее роста, от понятия прогресса, от представления о какой-то характерной особенности человека, появившейся вместе с ним и растущей по мере удаления человечества от времени его возникновения на Земле. Определение цивилизации зависит от определения человека в его отличии от природы.
Отличие человека от природы не означает, что он — вне природы, оно означает, что существование человека не только подчинено общим закономерностям природы — механическим, физическим, химическим и биологическим, но вместе о тем подчиняет механические, физические, химические и биологические процессы целям мыслящего духа. Освобождение человека от чисто биологического приспособления к среде, переход к специфически человеческому приспособлению, к целесообразному подчинению окружающих сил природы — это и есть цивилизация, которая появляется вместе с человеком, своим ростом отмечает отход человека от момента его возникновения на Земле и своим состоянием в каждую эпоху измеряет интервал, отделяющий эту эпоху от генезиса человека и цивилизации. Рост специфически человеческого, не свойственного противостоящей человеку природе, «очеловечение» человека, освобождение его от подчинения природе, его «дебестиализация», повышение человечности в человеке — интегральное определение прогресса.
Отсюда следует, что исходное определение цивилизации должно указать величину, рост которой знаменует прогресс цивилизации, а ненулевое значение свидетельствует о возникновении человеческого рода. Это сумма сил природы, направленных целесообразной деятельностью человека, подчиненных целям человека, скомпонованных так, чтобы реализовать некоторое представление, некоторый образ, заранее существовавший в сознании человека. Поэтому цивилизация — ровесница труда как целесообразной деятельности, ровесница применения орудий. Человек, выделившийся из природы, подчиняющий себе силы природы для реализации цели, заранее существовавшей в сознании, — это toolmaking animal[93].
Орудия труда — это механические средства, подчиняющие целям человека силы, которые превышают по мощности физиологические возможности человеческого организма (рычаг), или действуют на недоступном человеческой руке расстоянии (палка, камень для метания), или создают недоступное руке давление на поверхность (кол, лезвие ножа). За ними следует применение сил природы для получения недоступных организму температур (огонь). Далее, вмешательство в процессы распространения полезных растений (посевы) и в вегетационные условия (ирригация), включение в баланс целесообразно используемых энергий потенциальной и кинетической энергии воды (гидравлические колеса) и т. д.