То, как мозг интерпретирует картину активации рецепторов, становится интригующей загадкой. Вопрос уже не сводится к тому, как мозг узнает, скажем, что цис-3-гексенол пахнет свежескошенной травой. Вопрос уже в том, как мозг осмысляет перекрывающуюся и недискретную активность рецепторов, возникающую в ответ на обонятельные стимулы. Иными словами, как мозг превращает рассредоточенную активность рецепторов в картину на уровне нейронов и в образ восприятия? По какому принципу мозг осмысляет мозаичные данные, отражающиеся на уровне рецепторов? Эти вопросы подводят нас к анализу обонятельного мозга, чему посвящены две последующие главы.
Ящик Пандоры открылся.
Глава 7. Анализируем луковицу
Такие сложные биологические системы, как системы чувств, редко удается понять только через призму свойств составляющих элементов. Яркий пример – конвергентная организация[301] рецепторов в обонятельной луковице, обладающей дискретной пространственной активностью. Насколько такая структура определяет функцию? «Мы этого не знаем, – комментирует Стюарт Фаерштейн. – В нейробиологии и, возможно, во многих разделах биологии вы обнаруживаете нечто и решаете, что оно очень хорошо соответствует конкретной функции. Но часто вы не знаете, выглядит ли оно так, поскольку хорошо соответствует данной функции, или это одно из решений, возникших в процессе развития, которое не имеет никакого отношения к функционированию взрослого организма – это лишь был простейший путь для ее формирования. Я думаю, ситуация именно такова [в обонятельной луковице]». Что это означает для нашего понимания функционирования обонятельного мозга?
Обонятельный путь кажется очевидным. Это почти непрерывный путь из воздуха к коре мозга. Лишь два синапса опосредуют воспроизведение химической информации из окружающей среды на уровне нейронов. Это самый прямой сигнальный путь среди всех сенсорных систем (в зрительной системе два синапса не выводят даже за пределы сетчатки!) Но мы все еще не понимаем до конца, как обонятельный мозг отражает сенсорную информацию. Эта простота обманчива.
Как дезорганизованная на уровне эпителия мозаика информации складывается в стойкий образ при переходе всего через один или два синапса? Сейчас этот вопрос находится в фокусе нейробиологических исследований, поскольку, как выясняется, обонятельный мозг – не укороченная версия других сенсорных систем. Функциональная локализация – основная парадигма сенсорной нейробиологии – связана со стереотипным (то есть генетически заданным и воспроизводимым) отражением стимула на карте сенсорной коры. Но, похоже, эта модель не применима к обонянию. Отличие нейронной организации обонятельной системы от организации других сенсорных систем – тема этой и следующей глав. Функционирование обонятельной луковицы отражает скрытую сложность обработки обонятельных сигналов.
Один-два синапса – и мы в коре
На первый взгляд обонятельная система представляет собой простой путь, состоящий из трех основных этапов. Сначала информация отбирается рецепторами, расположенными на ресничках чувствительных нейронов назального эпителия. Как мы обсуждали в Главе 6, картина активации на уровне рецепторов не имеет определенной пространственной организации. Далее сигналы рецепторов отсылаются в обонятельную луковицу, расположенную в нижней части лобной доли мозга, где они собираются в так называемых клубочках[302] (сферических нейронных структурах). И неожиданно в луковице мы обнаруживаем пространственно различимые картины активации. Это возможно благодаря особым генетическим свойствам системы. Каждый клубочек принимает сигналы ото всех нейронов, в которых экспрессируется ген одного специфического рецептора. (На самом деле из экспериментов на мышах известно, что нейроны, экспрессирующие ген одного и того же рецептора, проецируются примерно в два клубочка: иногда чуть больше, иногда чуть меньше). А клубочки иннервированы митральными клетками. Здесь осуществляется первый синаптический переход.
Митральные клетки, названные так из-за сходства их формы с головным убором католического епископа, принимают сигнал от рецепторных нейронов и передают в определенные области обонятельной коры. Аксоны митральных клеток ведут к амигдале, энторинальной коре и обонятельному бугорку, но большинство доходит до так называемой грушевидной (или пириформной) коры – самого обширного отдела обонятельной коры, который связан с некоторыми соседними отделами коры уже вне обонятельной системы. Здесь обонятельные сигналы быстро смешиваются с сигналами из областей, связанных со многими другими процессами с перекрестной модальностью (обонятельный бугорок), с процессом принятия решений (орбитофронтальная кора), памятью (гиппокамп) и эмоциями (амигдала). Это место второго синаптического контакта.
Рамон-и-Кахаль в начале XX века указывал на эти особенности обонятельного пути. Его изображение обонятельной системы отражает ранние научные представления (рис. 7.1)[303].Кахаль считал, что простой путь обоняния служит прекрасной моделью для изучения мозга в целом.
В исследованиях мозга в XX веке совет Рамон-и-Кахаля был забыт. Отчасти по методологическим причинам: обонятельный стимул сложно передать и сложно контролировать (см. глава 1). Также казалось невозможным обнаружить в носу рецептивное поле, такое как Куффлер нашел в сетчатке глаза (см. глава 2). В ретроспективе это становится понятным, если учесть большое разнообразие рецепторов и данные современных исследований кодирования запаха. И все же почему за три последних десятилетия уже после открытия рецепторов так и не был взломан код обонятельных нейронов? Если исходить из наблюдений Рамон-и-Кахаля, это может показаться достаточно очевидным делом.
РИС. 7.1. Рисунок обонятельного пути, выполненный Рамон-и-Кахалем. Показано, как заключенная в запахе информация передается через два синапса: первый на уровне клубочков (сферические структуры слева), второй – при проецировании в кору (справа). Рисунок любезно предоставлен Институтом Кахаля: архивы Рамон-и-Кахаля, Высший совет по научным исследованиям (CSIC), Мадрид, Испания.
«Потому что Рамон-и-Кахаль не представлял молекулярной сложности пути», – комментирует Чарли Грир. Как считает его коллега Цзоу Донцзин из лаборатории Фаерштейна, в этой области многие вопросы по-прежнему остаются без ответа, когда речь заходит о деталях работы системы: «Например, сколько митральных клеток выходит из обонятельной луковицы? Все ли они одинаковые? Есть только один главный тип или несколько типов клеток? Никто этого не изучал в деталях». Рэнди Рид соглашается: «Ответить на этот вопрос сложно. Мы знаем, что не все они одинаковые. Но мы не знаем, почему они не одинаковые».
Самая большая загадка обонятельного мозга в том, что он создает сложную топографическую карту обонятельных сигналов, чтобы немедленно отказаться от нее сразу после первой синаптической передачи. «Вот есть удивительная карта, – комментирует Ричард Аксель. – Это одна из самых красивых карт мозга. Она прекрасна концептуально и очень хороша эстетически». Но кора немедленно о ней забывает. Обонятельные сигналы в грушевидной коре тщательнейшим образом перемешиваются, и их пространственное распределение в значительной степени случайно (см. глава 8). «И вот эта прекрасная и тщательно организованная в луковице структура ни с того ни с сего фактически отбрасывается».
Обонятельная луковица представляет собой загадку – одну из тех, которые не разгадать немедленно: ее пространственная организация далеко не очевидна по двум причинам. Первая: карта запаха в луковице не играет никакой роли при дальнейшей обработке обонятельных сигналов и их превращении в образ запаха. Обонятельная кора отличается от других отделов первичной сенсорной коры отсутствием топографической организации, ставшей парадигмой для нейробиологов, изучающих системы чувств. Вторая причина касается карты запаха в самой луковице. Что на ней отражено? И насколько справедливо предположение, что пространственная организация луковицы вообще является картой? Топография луковицы базируется на гораздо менее прочных основаниях, чем считалось ранее.
Обманчивая простота
Вероятно, обонятельная луковица – наиболее подробно изученная нейронная структура обонятельной системы. Но аналогично тому, как в последнее время вновь возник интерес к изучению сетчатки глаза, недавние исследования луковицы поставили под сомнение старые идеи о ее структуре и функции.
Пересмотр традиционных взглядов начинается с размера луковицы: издавна было принято считать, что размер этой структуры уменьшился у высших млекопитающих, особенно у человека. В процессе эволюции, по мнению известного психолога Стивена Пинкера, обонятельная луковица «съежилась до трети от ожидаемого размера у приматов (уже небольшого по стандарту млекопитающих)»[304]. Это мнение остается широко распространенным, однако не выдерживает проверки. В недавней статье в журнале Science нейробиолог Джон МакГанн из Ратгерского университета заявил, что обонятельная луковица человека не так уж мала[305]. МакГанн задался вопросом: «Что мы понимаем под размером в первую очередь? Имеем ли мы в виду пропорциональное соотношение, межвидовое сравнение или плотность нейронов? Существует много способов оценки связи между структурой и функцией!»
Размер, как и любая мера, зависит от шкалы. Объем человеческой обонятельной луковицы невелик. Однако по количеству нейронов луковицы человека и других животных сравнимы. Кроме того, можно сказать, что у человека не луковица съежилась, а увеличился мозг. Чарлз Ф. Стивенс из Института Солка проанализировал масштабы нейронных микросетей и указал на сохранность обонятельных нейронных структур в целом у разных видов