Отображение стимулов без карты
Проведение сигнала в луковице не предопределено, и генетика рецепторов играет важнейшую роль в образовании клубочков. То, что кажется неупорядоченным, не обязательно нефункционально. Обонятельная луковица не имеет карты запахов, понимаемой как отражение хемотопической или ринотопической организации или как некое стандартное распределение по определенным участкам, основанное на химии стимулов. В луковице не закодирована топология стимулов. И главная загадка остается без ответа: какую информацию передает эта частично структурированная и сформированная в ходе развития организация луковицы?
«Проблема в том, что мы не знаем точно, что нужно искать, – комментирует Рид. – У нас нет подходящей модели для ответа на эти вопросы. На мой взгляд, интересно, что в какой-то степени это вопросы или проблемы, которых нет в зрительной и слуховой системах. Они не связаны с такого рода проблемами. Чтобы выйти из этой ситуации, либо придется сказать, что в луковице существует некая «одотопическая» карта, что означает попытку свести систему к двум известным моделям, либо признаться, что здесь реализуется совершенно иной процесс».
По мнению Шеферда, решение в вычислительных механизмах, лежащих в основе восприятия запахов. Возможно, эти процессы не отличаются в корне от того, что происходит в зрительной системе, но используют наименее изученный механизм визуального кодирования, который отвечает за распознавание лиц. «Я думаю, что новая технология распознавания лиц имеет большое значение для точной количественной характеристики нестандартной схемы активации обонятельных клубочков – это еще один пример того, какие преимущества обоняние может получить от основных направлений науки и технологии».
Лица, как и запахи, не описываются простыми признаками, такими как форма или группы форм (иначе все мы были бы художниками). В лицах завораживает то, что мы выделяем их по индивидуальным признакам на фоне общей картины. Идея Шеферда интересна в связи с важнейшей особенностью распознавания запахов – ее индивидуальным подходом, особенно с учетом контекста. Шеферд убежден, что аналогия с распознаванием лиц поможет понять активность луковицы: «Такое предположение станет реальным с новой технологией распознавания лиц или чего-то подобного, когда они будут применены для распознавания картины активности клубочков». Возможно, вычислительная аналогия Шеферда окажется верной и без сохранения концепции топографии.
Непредсказуемость действия стимулов, в том числе нестандартность химической топологии при распознавании запахов, не означает, что не существует закономерностей, которые можно моделировать. Это просто указывает на необходимость другого подхода к созданию модели. Нам нужно заново обдумать, что именно система вычисляет и отображает.
Особенность функционирования обонятельной системы «в природе» – непредсказуемость химических стимулов из окружающей среды и их взаимодействия с сенсорной системой. Томас Клеланд из департамента психологии в Корнеллском университете предположил, что луковица отображает не классы химических веществ, а химическую среду. Точнее, луковица отслеживает статистику изменений запахов в окружающей среде[337]. Возможно, активность луковицы соответствует статистике химического окружения.
Такая функциональная топология требует достаточной гибкости и пластичности сигнальной системы, а не анатомической близости (как в зрении). В частности, необходима оптимальная настройка для передачи изменчивости и частоты входных сигналов. Эта настройка основана на двух важнейших элементах обонятельной системы – генетике рецепторов и ингибировании.
Генетика рецепторов играет критическую роль в статистическом отслеживании изменений химического окружения за счет настройки диапазона рецепторов (вспомните, что она определяет сродство лигандов к рецепторам). Это может объяснять перекрывание картин активности при действии специфических одорантов. Пространственная организация луковицы отражает не топологию стимулов, а приблизительный диапазон настройки.
Ингибирование в микросетях луковицы в этом контексте служит для усиления контраста и разделения сходных стимулов. Локальная обработка обонятельных сигналов в микросетях вставочных нейронов не просто координирует и уточняет пространственные картины. Важно, что она индуцирует формирование временной картины, определяющей специфические обонятельные сигналы, и способствует их дальнейшему разделению, особенно по сравнению с запахами со схожими химическими признаками или с другими стимулами с перекрывающейся картиной активации. Поэтому в главе 8 мы поговорим о том, как принципы временного кодирования определяют распознавание и классификацию запахов.
На основании системного теоретического подхода мы теперь можем заключить, что отображение запахов на уровне нейронов определяется не химической топологией, а классами химических соединений из окружающего пространства. Терри Экри едко заметил: «Мозг – не немецкий химик!» (на что Шеферд мгновенно отреагировал: «Но мозг немецкого химика – да»). Картина на уровне нейронов отображает взаимодействие организма с внешним окружением. И указывает на необходимость моделирования этого окружения в тех условиях, в которых находится система. В результате, учитывая центральную роль рецепторов в функционировании системы, о которой мы говорили в этой главе, далее нам следует обратиться к вопросам обработки сигнала в центральной нервной системе: как мозг учится отслеживать и запоминать внешние закономерности в поведении стимулов?
Глава 8. Измеряем запахи не по карте
Подумайте о том, что наш мозг постоянно находится в состоянии разногласий с самим собой. Его «желания» и «нужды», по-видимому, не совпадают. Как идущая по следу собака, он все время находится в поиске информации. Отыскивая в окружающей среде нужные или новые фрагменты информации, мозг постоянно подстраивается под изменчивое состояние тела и психики (мир кажется другим, когда мы голодны или угрюмы). В то же время мозг ищет стабильности. Он хочет знать, что происходит, точнее, какой порядок вещей определяет весь этот информационный хаос внешнего мира, с которым он постоянно сталкивается. Мозг справляется со множеством данных, делая предсказания на основе известных ему законов. В этом процессе нисходящие сигналы (основанные на предыдущем опыте) являются важнейшим условием для заучивания и запоминания специфических сенсорных признаков и их распределения по перцептивным категориям[338].
Джон МакГанн уверен, что мозг работает именно так. «Мозг делает разумные выводы о том, что происходит. Он только быстро поглядывает на входные сигналы, чтобы проверить, все ли так. Я думаю, нет смысла искать независимый, точный и исключительно восходящий сигнал. Скорее, модель такова: “Есть догадка. Она соответствует ситуации? Если нет, нужно подкорректировать”».
Представление о мозге как о предсказательном устройстве, не ново. Герман фон Гельмгольц в XIX веке выдвигал похожую идею. Эрик фон Хольст и Хорст Миттельштадт одновременно с Роджером Сперри описывали предсказательную функцию «эфферентной копии» (или сопутствующих разрядов) в зрительной системе в 1950 году[339].
Эту идею можно проиллюстрировать простым экспериментом. Выставьте перед собой указательный палец и посмотрите на него. Затем начните двигать палец влево и вправо, влево и вправо, еще и еще. Следите за пальцем глазами. На определенной скорости становится трудно следить за пальцем, зрительное изображение движущегося пальца расплывается. Теперь не двигайте пальцем, но начните качать головой влево и вправо, влево и вправо. Следите глазами за пальцем. В этом случае зрительное изображение пальца не расплывается, а остается сравнительно четким.
Дело в том, что мозг создает внутреннюю копию ожидаемого двигательного поведения, что необходимо зрительной системе. В этом процессе задействованы два предсказательных механизма. Во-первых, когда глаза следят за движущимся пальцем, сетчатка следует за движениями внешнего предмета (экзафферентный сигнал[340]). В какой-то момент движения сетчатки становятся недостаточно быстрыми, чтобы уследить за движениями пальца, и в результате зрительный образ пальца расплывается. Напротив, когда вы качаете головой, глядя на палец, мозг предсказывает соответствующее движение глаз для наблюдения за неподвижным пальцем (реафферентный сигнал). В результате в процессе восприятия движение сетчатки соответствует по скорости движениям головы. Эта функция памяти сопрягает двигательную систему с сенсорными закономерностями – заученный прием, указывающий правильное положение глаз (а не определение того, где они находятся). Терри Экри замечает: «Помните, что это мозг эволюционировал в теле, а не наоборот».
Упреждающие модели позволяют мозгу посылать глазам двигательные сигналы и компенсировать движения по отношению к неподвижному окружению. Это компромисс между точностью и скоростью. Создавая упрощенную модель (она не должна быть точной, просто «достаточно хорошей»), мозг сокращает количество сигналов, с которыми ему приходится иметь дело. Индуцированные мозгом сигналы отличаются от сигналов из внешнего мира. Мозг снижает собственную «когнитивную нагрузку», снижая помехи стимулов и стабилизируя обработку входящей информации от собственных сигналов (этим механизмом пользуются не только люди: так действуют мухи, рыбы, тараканы и сверчки).
Эта идея была подхвачена в недавних исследованиях в области когнитивной нейробиологии и философии. Ученые анализировали механизмы предвидения, главным образом в системе зрения, но также в системе слуха. Однако в большинстве моделей предсказательный мозг рассматривается в рамках компьютерного подхода, без достаточной связи с экспериментальными данными о клеточных механизмах.