Физика без формул — страница 10 из 24



В прошлом же веке электрическую дугу «подрядили» освещать улицы. И сегодня одни из самых мощных осветительных приборов — дуговые лампы.

Миниатюрный, надежный? — В космос!

Вы, конечно, пользовались транзисторными приемниками. Их иногда просто называют «транзистор». Однако это — пусть важная, но только одна деталь приемника, построенного на полупроводниковых элементах.

А что такое полупроводник? Это кристаллики твердых веществ, скажем, кремния, обладающих особыми электрическими свойствами. Например, в отличие от металлов, сопротивление полупроводников с увеличением температуры уменьшается. На их проводимость может влиять облучение светом. А самое интересное, что мы можем менять их способность проводить электрический ток вкраплением примесей разных химических веществ.

Полупроводники, как подсказывает их название, занимают промежуточное место между проводниками и изоляторами. Возможность менять их электрические свойства в широком диапазоне обеспечила им широкое применение в электротехнике, радиоприборах и электронике. Скажем, фотоэлемент, способный замыкать и размыкать электрическую цепь под действием света, построен на основе полупроводников. Чувствительный термометр, замечающий ничтожно малые перепады температур — тоже его применение.

Соединение различных полупроводников образует диод — прибор, пропускающий ток только в одну сторону. А добавление третьего полупроводника в эту «компанию» позволяет слабыми изменениями тока управлять током большим. Вот это и есть усилитель — транзистор.



Благодаря распространению полупроводниковых элементов стало возможным перейти от громоздких вычислительных машин к миниатюрным, умещающимся порой в объеме записной книжки. Маленькие размеры, большой объем памяти и быстродействие позволяют применять такие устройства на борту космических кораблей.

Еще очень важная область, где полупроводники должны сказать свое весомое слово — солнечная энергетика. Пока устройства, преобразующие солнечный свет в электроэнергию, не очень эффективны и весьма дороги. Но их уже используют для обеспечения энергией космических комплексов. Солнечные батареи размещают, как вы, наверное, видели, на «крыльях»-панелях орбитальных аппаратов. А не так давно смог самостоятельно двигаться первый автомобиль на солнечных батареях.

Без потерь по проводам

В механических устройствах, как ни старайся, а совсем избавиться от трения нельзя. Наверное, то же самое и с электрическим сопротивлением? На то оно и сопротивление, чтобы мешать электрическому току течь по проводам, терять энергию и выделять ее в виде тепла.

До поры до времени так и считали. Однако оказалось, что природа и здесь подготовила нам сюрприз.

В 1911 году голландский ученый Хейке Камерлинг-Оннес обнаружил удивительное явление. При очень низких температурах, близких к абсолютному нулю, некоторые металлы резко, скачком, теряют свое сопротивление. Это явление получило название сверхпроводимости.

К сожалению, такой «подарок», который обеспечил бы передачу электрической энергии по проводам без потерь, принять людям было трудно. Ведь чтобы создать такие низкие, несуществующие на Земле, температуры, приходилось, как в холодильнике, энергию затрачивать. Поэтому начались многолетние поиски новых, высокотемпературных сверхпроводников.

Шли десятилетия. Лишь в пятидесятых годах это явление получило теоретическое объяснение. Однако температуру необычного состояния удалось поднять только на пару десятков градусов. Чего только не изобретали исследователи! И вот в 1986 году швейцарским ученым удалось найти такие композиции веществ, в которых сверхпроводимость возникала уже при сотне градусов выше абсолютного нуля.



Это, конечно, еще далековато до наших обычных температур. Тем не менее, достижение сверхпроводимости упростилось. Сейчас ее используют во все более широких масштабах при проведении физических экспериментов.

А еще благодаря этому открытию укрепилась надежда, что в скором времени она будет достигнута и при обычных, комнатных температурах.



Подумайте, к каким революционным последствиям может привести появление материалов с нулевым электрическим сопротивлением.

Как зарядиться давлением?

Какие зажигалки вы знаете? Может быть, кому-нибудь встречались старые — с фитильком, пропитанным бензином. Или новые, газовые, когда колесиком высекают искру, поджигающую струйку вырывающегося сжатого газа. На кухнях, где стоят газовые плиты, пользуются подсоединенными к сети электрическими зажигалками, в которых проскакивает искра, созданная высоким напряжением. А не попадались ли вам зажигалки без всяких проводов, но так же высекающие искры при нажатии на кнопку?

Действительно, откуда в них берется энергия? Если вы разберете такую зажигалку в поисках батарейки или газового баллончика, то ничего подобного не обнаружите. А найдете внутри небольшой кристалл с подсоединенными к нему проводочками. Это — кристалл кварца, который как выяснилось более 100 лет назад, обладает интересными свойствами. При сжатии его с двух сторон на других гранях возникают электрические заряды двух разных знаков, то есть создается электрическое напряжение. Именно его используют в зажигалках для создания искры.



Такое любопытное явление, названное пьезоэлектричеством, стали применять уже во время I мировой войны для обнаружения… подводных лодок. Двигаясь в воде, винт лодки создает попеременные сжатия и разрежения воды, бегущие от лодки в виде волн. Если на их пути разместить пьезоэлектрический кристалл, то он начнет колебаться под действием переменного давления и его грани станут заряжаться. Возникнет электрический сигнал, который позволит таким образом уловить шум от далекой подводной лодки.

Пьезоэлектрический эффект сегодня широко применяют в микрофонах и телефонах, для создания ультразвуковых волн, обнаружения дефектов внутри металлов и для измерения механических напряжений и вибраций.

Поле — стремительный гонец

Давайте задумаемся над вот каким вопросом. Пусть нам понадобится включить какой-то мощный электрический прибор, доступ к которому затруднен. Ну что ж, для этого мы протянем к нему провода, а кнопку или рубильник разместим в удобном нам месте. Теперь одним движением пальца щелкаем кнопкой, замыкаем цепь, и что-то там вдалеке зажглось, завращалось, загрохотало, поехало…

Как вы считаете, когда мы замкнули цепь, заряды от нас сразу помчались к прибору? Моментально добежали до него и вернулись обратно? Закружились по цепи? Да, закружились, но не так скоро, как нам могло показаться.

Оказывается, при включении цепи заряды, переносящие ток, пришли в движение все одновременно. Собственная скорость, с которой они текут, удивительно мала — какие-то доли миллиметра в секунду. Почему же тогда прибор почти мгновенно отреагировал на наше нажатие кнопки и сразу заработал?

А дело в том, что не сами заряды побежали по цепи так быстро, они только передали друг другу сигнал — «пора двигаться!» Вот этот-то сигнал и несется с огромной — триста тысяч километров в секунду — скоростью. Что же это за скорость такая? Ее называют скоростью распространения электрического поля и равна она скорости света.

Идея о том, что вокруг электрических зарядов меняются свойства пространства, иными словами, создается электрическое поле, возникло в работах великого английского ученого Майкла Фарадея. В дальнейшем она блестяще подтвердилась и легла в фундамент теории электромагнетизма.

Вот и в нашем примере зарядам не было нужды мчаться «во весь дух» по цепи. Им было достаточно «шевельнуться» при ее замыкании, а информацию об этом электрическое поле донесло до всех «закоулков» цепи, заставив везде течь ток.


Мир магнетизма

…Сесть на железный круг

И, взяв большой магнит,

Его забросить вверх высоко,

Докуда будет видеть око;

Он за собой железо приманит…

Э. Ростан


Знаете, что описано в этом стихе? Так знаменитый герой Эдмона Ростана, поэт и фантазер Сирано де Бержерак предлагал полететь… на Луну. Подумайте, кстати, возможно ли подниматься подобным манером.

Нам же сейчас важен лишь один из участников этого «полета» — магнит. Знали о нем, как видно, исстари. И компасы придумали, и для всяких развлечений и устройств приспосабливали. Да и вы, конечно, баловались с магнитами, заставляя ими «плясать» гвоздики и стальные скрепки.

Но вот когда человек научился управлять «магнитной силой» и даже создавать магниты искусственные, он сумел воплотить в жизнь свои давние и заветные мечты.



Можно ли говорить друг с другом на огромном расстоянии? Бывает ли связь без проводов? Как посмотреть футбол в Америке, сидя на диване в Москве?

Все это оказалось осуществимо. Телеграф, телефон, радио, телевидение, даже трансляции с других планет — разве нам это в диковинку? А начиналось путешествие в огромный и волшебный мир магнетизма с наблюдений за маленькой дрожащей стрелкой компаса.

Зачем нужен компас?

Самые простые опыты по магнетизму — опыты с компасом. Ну-ка, рассмотрите его повнимательнее. Стрелка компаса окрашена двумя цветами: один конец синий или голубой, а другой — красный. Сделана она из кусочка железа и укреплена так, что может свободно вращаться на кончике иглы. Синий ее конец указывает на север, красный — на юг. С помощью этой стрелки мы можем ориентироваться в сторонах света.

Таким свойством — поворачиваться в пространстве — обладают многие намагниченные предметы. Подвешенный на нитке железный гвоздь, если он был намагничен, также становится «компасом», то есть поворачивается по направлению «север-юг».

Трудно сказать, когда люди обнаружили такое явление и стали его применять. Во всяком случае, еще более 4000 лет назад это открытие было известно китайцам. Через арабских купцов с принципом действия компаса познакомилась и Европа, и в течен