Когда пришел момент опустить буй с аппаратурой на воду, мы, ученые, в своих непромокаемых комбинезонах, собрались на дальнем конце палубы, а за работу принялась команда судна. С помощью лебедки они приподняли нашего желтого монстра с палубы и осторожно опустили в темные воды. Оказавшись в одиночестве среди бескрайнего бушующего моря, он уже не производил впечатления монстра – скорее, напоминал маленькое желтое пятнышко, которое с трудом угадывалось за вздымающимися вокруг него волнами. Экипаж и ученые, столпившись возле поручней, начали оживленно обсуждать посадку буя на воду и скорость, с которой он удалялся от корабля. Но я не задумывалась об этом. Я думала об электронах.
Там, под водой, началась их гонка. Они отчаливали от батареи, обегали электрические цепи научной аппаратуры, закрепленной на буе, и возвращались в батарею – с другого ее конца. В этих кольцевых гонках по электрическим цепям устройств, задействованных в эксперименте, участвовало фиксированное количество электронов; все они обегали одно и то же кольцо. Электроны не покидали его пределов, никуда не «расходовались» – просто наматывали круг за кругом. Задача заключалась лишь в том, чтобы постоянно подпитывать систему энергией, которая бы заставляла электроны совершать свое поступательное движение. Наматывая круг за кругом по кольцу, электроны затрачивают определенную энергию. Ее источником является батарея, а это весьма хитроумное устройство.
«Фишка» батареи в том, что она организует некую цепочку событий, где каждое звено служит источником электронов, необходимых следующему звену. Таким образом, как только к какой-либо электрической цепи подключают батарею, создаются условия, обеспечивающие движение электронов по этой цепи. У каждой из наших морских батарей было два вывода, с помощью которых они подсоединялись к любой электрической цепи, обеспечив ее питание. Внутри батареи каждый вывод был подсоединен к одной из двух свинцовых, не соприкасавшихся между собой пластин. Пространство между ними было заполнено кислотой (именно поэтому батареи называются свинцово-кислотными). Свинец может вступать в реакцию с кислотой двумя способами. Для одного необходим приток дополнительных электронов, а другой обеспечивает такой приток, вырабатывая дополнительные электроны. Свинцово-кислотная батарея считается полностью заряженой, когда эти две реакции между свинцом и кислотой заходят настолько далеко, насколько это возможно.
Подсоединив научную аппаратуру к батарее, я, по сути, создала путь, пролегающий от одной свинцовой пластины через электрические схемы всей научной аппаратуры к другой свинцовой пластине. Оставалось добавить в этот лабиринт последний, но принципиально важный, недостающий фрагмент: вследствие химических реакций, протекающих на свинцовых пластинах, в проводах возникло электрическое поле. Именно оно приводит в движение электроны, заставляя их перемещаться от одной свинцовой пластины к другой. Но поскольку электроны не могут перемещаться в кислоте, им ничего не остается, как двигаться длинным окольным путем: по «наружной» электрической цепи. Как только электрическое поле создаст для электронов возможность продвижения по электрической цепи, реакции на свинцовых пластинах начинают идти в обратном направлении из-за образования замкнутой электрической цепи. Одна из свинцовых пластин (точнее, следовало бы говорить об «одном комплекте» свинцовых пластин) отдает электроны кислоте, а затем кислота передает этот заряд на другую свинцовую пластину (опять-таки, следовало бы говорить о «другом комплекте» свинцовых пластин), которая в процессе химической реакции принимает на себя электроны. В целом процесс движения электронов по цепи поддерживается, поскольку существует наружная электрическая цепь, по которой они могут возвращаться к первому комплекту пластин. Самое главное, что в процессе перемещения по наружной электрической цепи электроны теряют часть энергии. Такое их перемещение называется электрическим током. Если его прохождение по сложной электрической цепи приводит к выполнению какой-либо полезной функции, реализуемой этой электрической цепью, то это означает, что с помощью электрической батареи вам удалось заставить электрическую энергию работать.
Все эти мысли проносились в моей голове, пока я, перегнувшись через поручни на палубе, наблюдала за желтым буем, пляшущим на волнах. Камера должна была включиться, создав путь для электронов от батареи, которые добрались по проводу до отсека с камерой. Пути прохождения электронов нужно все время контролировать, памятуя о том, что они всегда выбирают самый легкий для себя путь. Пути для движения электронов создаются с помощью проводящих материалов. Кабель питания изготавливается из металла. Продвигаться по металлу электронам гораздо легче, чем по пластмассовой оболочке кабеля, поэтому можете быть уверены, что они будут двигаться именно по кабелю, а не рваться наружу через его пластмассовую оболочку. Помимо управления электрическим током путем комбинирования проводящих и непроводящих материалов, самым основным элементом управления электрическим током является переключатель. Замкнутый переключатель – то место в электрической цепи, где соприкасаются две части электрического провода. Они не соединены между собой «намертво», но когда соприкасаются, электроны могут свободно перетекать из одной части в другую. Чтобы остановить их движение, достаточно просто рассоединить эти части электрического провода. Поток электронов остановится, лишившись легкого пути, чтобы перебраться из одной части провода в другую.
Добравшись по проводу до отсека с камерой, поток электронов разветвляется по двум направлением: одно ведет к компьютеру, а другое – к собственно камере. Говорят, что все дороги ведут в Рим. Применительно к электрическим цепям можно сказать, что они ведут к батарее. Массивный желтый буй был лишь наружной оболочкой для этого ветвящегося потока электронов, а сами они генерировали электрические и магнитные поля, приводя в движение шторки камеры, выполняя роль секундомеров, создавая световые вспышки и фиксируя данные в виде огромной и чрезвычайно сложной синхронизированной последовательности электрических импульсов, прежде чем вернуться к батарее.
И все это происходило во время шторма, разыгравшегося в Северной Атлантике, когда буй раскачивался на огромных волнах (иногда их высота достигала 8–10 метров). Мы маневрировали, отдавшись во власть стихии, рядом с буем на исследовательском судне, где сила земного притяжения была весьма ненадежным товарищем и где видимость порядка поддерживалась лишь стальными тросами, пеньковыми канатами и эластичными шнурами. Через три-четыре дня течение химической реакции в батареях подошло к концу – они снова вернулись в свое первоначальное, незаряженное состояние. Запас электрической энергии на буе закончился, исчерпалась сила, заставлявшая электроны перемещаться по электрическим цепям. Буй превратился в безжизненную оболочку из металла, пластика и полупроводниковых материалов. Но собранные нами данные уже хранились в полупроводниковой памяти компьютера, и это было очень надежное хранилище информации.
Через несколько дней, когда шторм стих, мы подтянули буй к судну и затащили на борт. Я всегда испытывала безмерное восхищение мастерством экипажа нашего исследовательского судна, наблюдая за тем, как умело они вылавливают из воды всевозможные предметы. Корабль нельзя заставить двигаться вбок; он медленно поворачивается и меняет направление. Чтобы получить шанс выловить буй и поднять его на борт, капитану нашего 75-метрового судна нужно было поставить его так, чтобы не повредить буй, но стать рядом с ним настолько близко, чтобы боцман мог зацепить его длинным багром. Как правило, этот маневр удавался капитану с первого раза.
Теперь наступала наша очередь. Батареи подключались к дизель-генератору. Электроэнергия, подаваемая с него, запускала в них обратные химические реакции, которые обеспечивали заряд батарей. Научную аппаратуру, за исключением камеры, извлекали из буя и заносили в помещения. Камеру мы оставляли на холоде, так как у танца электронов есть оборотная сторона и моему бедному аспиранту пришлось бы заплатить соответствующую цену.
Возможно, самый фундаментальный из известных нам физических законов – который из раза в раз подтверждает свою точность и его еще никогда и никому не удавалось опровергнуть – это закон сохранения энергии. Он гласит, что энергию нельзя создать или уничтожить, а можно лишь преобразовывать из одной формы в другую. Батарея заключала в себе химическую энергию, а химические реакции преобразовывали ее в электрическую энергию, после чего она перемещалась где-то между одним терминалом батареи и другим. Но где конкретно? Что-то происходило: камера делала снимки, выполнялись компьютерные программы, на носители информации записывались данные. Но ни одно из этих устройств не сохраняло электрическую энергию в каком-либо новом месте. Она просто незаметно куда-то «вымывалась». За целенаправленное перемещение электронов всегда приходится платить определенную цену, и такой ценой становится тепловыделение. Любое электрическое сопротивление заставляет платить некий «энергетический налог» на электрическую энергию, проходящую через него. Несмотря на то что электроны всегда выбирают путь наименьшего сопротивления, какой-то «налог» приходится платить в любом случае[75].
Камера была заключена в толстый пластмассовый корпус – материал, очень плохо проводящий тепло. Когда она работала, вся энергия электронов, перемещающихся по электрическим цепям, постепенно преобразовывалась в тепло. Пока камера пребывала в воде, это не имело особого значения, так как температура морской воды в то время составляла примерно 8 ℃ и вода интенсивно вбирала в себя тепло, эффективно охлаждая корпус камеры. Но воздух гораздо хуже справлялся с этой задачей. В лаборатории при загрузке данных из камеры в компьютер камера перегревалась. Мы делали все, что было в наших силах, но единственным решением, которое нам удалось найти, было оставлять каме