Однако, как сообщалось, в печати, эти и другие меры защиты не настолько эффективны, чтобы исключить полностью воздействие агрессивных сред шахтной атмосферы на ракеты и шахтные пусковые установки. Поэтому в США разработаны и находят широкое применение различные технические средства для измерения коррозии ракет и наблюдения за состоянием и составом атмосферы шахтных пусковых установок. Так, например, в шахтах для ракет «Титан II» и «Минитмен» используются визуальные и дистанционные системы электрического контроля. С их помощью производится непрерывное считывание метеорологических характеристик микроклимата шахты и степени коррозирования наиболее ответственных деталей и систем ракеты, т. е. постоянно работают своеобразная аварийно-техническая служба и «служба погоды» шахты.
Как видно из вышесказанного, боевая и техническая надежность современного оружия, даже такого мощного и совершенного, как ракетное, во многом зависит от внешних условий. И совсем не безобидным на поверку оказывается обыкновенный воздух, окружающий могучую стальную громаду, где бы она ни находилась — на поверхности земли или под семью замками железобетонной шахты.
ВОЛНА И КОРАБЛЬ
Океанская волна! Вряд ли найдется читатель, который не представляет себе ее мощи. И конечно, всякий понимает, сколько неприятностей может причинить морякам разбушевавшаяся стихия. Известны исторические примеры, когда штормы срывали крупные морские операции. Во время англо-испанской войны в 1588 г., когда на Британские острова двигалась «Непобедимая армада» испанских кораблей, англичанам оставалось, как говорится, только уповать на бога. Тогда «бог» помог англичанам: боевые корабли великой армады и транспорты с войсками попали в жестокий шторм в Бискайском заливе, и треть кораблей погибла. После неудачной попытки высадить десант испанцы отправились через Северное море вокруг Шотландии к своим берегам. Шторм у Оркнейских островов выбросил на берег и потопил еще ряд кораблей. В Испанию вернулось всего 50 кораблей из 130, потери достигли 20 тыс. человек.
Шторм и волна были главной опасностью кораблей прошлого. Но только ли прошлого? Во вторую мировую войну в штормовую погоду разламывались крупные транспорты и такие боевые корабли, как эскадренные миноносцы. Подсчитано, что только в проливе Ла-Манш на каждый невоенный год с 1902 по 1961 приходится 271 судно (включая мелкие), погибшее по различным причинам и прежде всего от штормов.
Однако известно, что уже кораблестроители глубокой древности умели строить корабли с высокими мореходными качествами, а мореплаватели отваживались совершать на них дальние походы. В V–IV веках до нашей эры карфагенский мореплаватель Ганнон вывел из Средиземного моря флотилию из 60 кораблей, миновал Геркулесовы Столбы и взял курс на юг вдоль побережья Африки. Флотилия дошла до побережья Сенегала, основав по пути 7 городов. На совсем небольших, по современным понятиям, кораблях совершали свои плавания русские мореплаватели — новгородцы и поморы. Да и каравеллы Колумба и Магеллана не отличались большими размерами.
Что же определяет возможности корабля безопасно совершать длительные плавания? Морякам и кораблестроителям хорошо известно такое понятие, как мореходность. Мореходность — это совокупность качеств корабля, обеспечивающих успешное его плавание при определенных условиях погоды. Корабль считается мореходным, если в море в свежую или штормовую погоду испытывает лишь умеренную бортовую (до 15°) и килевую (до 5°) качку с малой угловой скоростью (период качки не менее 10 сек.), если он устойчив на курсе, может развивать значительную скорость хода, волны не заливают его палубы, а брызги не мешают управлять кораблем и использовать его оружие или специальное, например тральное, оборудование. Мореходные качества корабля зависят от его размеров и их соотношения, от формы обводов, распределения составляющих весовой нагрузки корабля по высоте и т. д.
Естественно, что корабль больших размеров обладает более высокими мореходными качествами. А как обстоит дело, когда надо обеспечить максимальную мореходность при заданном водоизмещении корабля? Прежде всего, на параметры его качки влияет остойчивость— свойство корабля, препятствующее его накренению. Как ни странно на первый взгляд, но чрезмерное повышение остойчивости приводит к более резкой качке, т. е. ухудшает мореходные качества корабля. В то же время остойчивость не может быть уменьшена ниже определенной величины из-за требований другого, не менее важного качества — непотопляемости корабля. Естественно, мореходность корабля можно повысить за счет увеличения объема его надводного борта — запаса плавучести, но этот путь связан с рядом ограничений по весовой нагрузке. Наконец, остается форма подводной и надводной части корпуса корабля. Хотя форма подводной части корабля выбирается в первую очередь из условия обеспечения максимальной скорости на тихой воде, влияния на нее требований мореходности значительны. В последние годы в связи с увеличением размеров гидроакустических антенн, размещаемых в нижней части носовой оконечности корабля, широкое распространение получила каплеобразная форма подводной части его носовой оконечности. Такая форма способствует повышению скорости‘хода корабля на волнах и снижению амплитуды его килевой качки.
Определяющий внешний фактор мореходности корабля— морские волны. Наибольшие "ветровые волны наблюдаются в Южном полушарии. Длина их достигает 400 м, высота 12–13 м, период 17–18 сек., скорость распространения до 22 м/сек. Еще большие океанские волны возникают при подводных землетрясениях (так называемые волны цунами), однако такие волны — явление редкое. Гораздо чаще наблюдаются морские волны высотой 3–5 м. Зато такие волны обладают большей крутизной. Если отношение высоты к длине волны в открытом океане составляет 1/15—1/35, то для морских волн это отношение редко превосходит 1/10.
В Мировом океане плавают корабли и суда, водоизмещения которых находятся в широком диапазоне от нескольких десятков тонн до 180 тыс. т, подводные лодки водоизмещением под водой до 8 тыс. т. В числе надводных имеются обычные (водоизмещающие) корабли и суда с различными формами корпусов и соотношениями главных размерений, глиссирующие корабли и суда, корабли и суда на подводных крыльях и воздушной подушке.
Только один тип корабля — подводная лодка на большой глубине избавлена от воздействия ветра и поверхностных волн. Если не считать скрытности, то это обстоятельство можно отнести к важнейшему преимуществу подводного корабля над надводным. Все же остальные разновидности надводных кораблей и судов подвержены действию морской волны. При их проектировании конструкторы сталкиваются с проблемой обеспечения мореходных качеств. Проблема эта решается каждый раз по-иному, в зависимости от архитектурного типа, назначения и размеров корабля или судна. Но так как проблема имеет все же общий характер, определяемый взаимосвязью «волна — корабль», при ее решении используется ряд общих закономерностей, основанных на широко известных физических явлениях, изучаемых такими науками, как гидростатика, теоретическая механика и гидродинамика.
Русские и советские ученые внесли весомый вклад в науку, изучающую мореходные качества корабля. Вопросами, связанными с качкой корабля, занимались Н. Е. Жуковский, А. Н. Крылов и другие ученые. По праву основоположником науки «качка корабля» считается наш крупнейший ученый и кораблестроитель Алексей Николаевич Крылов. Его основополагающая работа «Новая теория килевой качки корабля» была опубликована еще в конце XIX века в трудах английского института корабельных архитекторов.
Качкой корабля называют его колебательные движения, вызванные внешними силами, — волнами, ветром, перекладкой руля, рывком при буксировке, стрельбой из артиллерийского, ракетного или торпедного оружия.
В последнее десятилетие внимание к мореходности кораблей и судов повысилось. Казалось бы, многолетний опыт мирового судостроения настолько обширен, что в области мореходных качеств корабля трудно что-либо улучшить. На самом деле это не так. До недавнего времени в лабораториях теории корабля — опытовых бассейнах— проводились эксперименты, связанные с выбором формы судна, исходя из обеспечения максимальной скорости на тихой воде.
Оборудование опытовых бассейнов ряда ведущих морских стран специальными устройствами для создания искусственного волнения и замеров гидродинамических характеристик уравнений качки позволило в процессе проектирования корабля проводить разнообразные испытания, связанные с определением параметров качки, заливаемостью и динамическими нагрузками на корпусные конструкции.
Значительное развитие получила и теория качки корабля. Если на первых порах в качестве исходных данных принимались условные регулярные волны, выражаемые математически синусоидой или трохоидой, а элементы качки корабля определялись на основе решения системы линейных дифференциальных уравнений, в настоящее время исходными данными служат спектральные диаграммы волнения моря, а характеристики качки самого общего вида определяются на основе решения систем нелинейных дифференциальных уравнений с помощью быстродействующих вычислительных машин.
Важные изменения происходят и в области мореплавания. Интересно отметить, что в эпоху парусного флота большое внимание уделялось изучению морских течений и ветров и выработке рекомендаций по оптимальным маршрутам плавания. Особенно большое значение это имело для морских сообщений между Европой и Америкой. В 1847 г. в США были опубликованы карты ветров и течений, составленные океанографом Mayри. Первым этими картами воспользовался командир барка «Райт» Джексон. Переход его корабля от мыса Виргиния до Рио-де-Жанейро занял 38 дней вместо обычных 55, а переход обратно — 37 дней.
С развитием парового флота внимание к составлению подобных карт, требующему больших затрат труда, несколько ослабло, так как корабли старались выбирать курсы по кратчайшему расстоянию между пунктами отправки и назначения.