Флатландия. Сферландия — страница 9 из 18

Генри П. МэннингЧто такое четырехмерная геометрия?

I

Геометрия, которую мы изучаем в школе, подразделяется на две части: планиметрию, или геометрию двух измерений, и стереометрию, или геометрию трех измерений. Изучение этих геометрий естественно приводит к мысли об обобщении геометрии на случай четырех или большего числа измерений. Например, на плоскости прямая может быть перпендикулярна другой прямой, и положение любой точки можно задавать, указывая, на каком расстоянии она находится от двух взаимно перпендикулярных прямых, проходящих через некоторую известную точку. В пространстве можно провести три взаимно перпендикулярные прямые, а положение любой точки задавать, указывая, на каком расстоянии она находится от трех взаимно перпендикулярных прямых, проведенных через некоторую известную точку. Таким образом, естественно возникает следующий вопрос: что мешает существованию геометрии, в которой мы могли бы провести четыре взаимно перпендикулярные прямые и положение точки задавать, указывая, на каком расстоянии она находится от четырех взаимно перпендикулярных прямых, проходящих через некоторую фиксированную точку? Но это еще не все. Площадь прямоугольника можно записать в виде произведения основания на высоту, а фигуры, изучаемые в планиметрии, рассматривать как состоящие из прямых или кривых или считать, что эти фигуры ограничены прямыми или кривыми. Объем прямоугольного параллелепипеда можно записать в виде произведения трех его измерений: длины, ширины и высоты, а фигуры, изучаемые в стереометрии, рассматривать (по крайней мере в большинстве случаев); как состоящие из плоских или кривых поверхностей или считать, что они ограничены такими поверхностями. Что же мешает нам сделать еще один шаг и рассматривать прямоугольные фигуры четырех измерений, считая их состоящими из плоских или искривленных трехмерных пространств?

Трехмерная геометрия более всеобъемлюща, чем планиметрия, и все же почти любой факт геометрии трех измерений имеет более или менее прямой аналог на плоскости. Геометрия четырех измерений была бы еще более всеобъемлюща, и все же она находилась бы к трехмерной геометрии в таком же отношении, как сама трехмерная геометрия находится к двумерной, что позволяет нам сразу же предсказать многие особенности четырехмерной геометрии.

Наши прогнозы станут понятнее, если сначала мы скажем несколько слов о том, что составляет предмет геометрии и какова природа геометрических рассуждений. Геометрия не рассматривает материальные предметы, например нить или лист бумаги, а интересуется абстрактными линиями или поверхностями. Не рассматривает геометрия и реальные факторы. Она лишь показывает, какие утверждения были бы верными, если верны некоторые другие утверждения. Применяя ту или иную геометрическую теорему к нити или листу бумаги, мы прежде всего должны проверить, выполняются ли условия этой теоремы, и правильность полученного нами результата зависит от того, в какой мере выполнены условия теоремы.

Даже аксиомы геометрии, ранее считавшиеся самоочевидными истинами, ныне рассматриваются лишь как гипотезы. Математик отнюдь не утверждает, что аксиомы верны. Он строит систему утверждений, которые с необходимостью следуют из аксиом и содержатся в самих аксиомах, но оставляет за собой свободу менять аксиомы и, выбирая различные наборы аксиом, строит различные геометрии. Каждая геометрия с математической точки зрения верна, верна в том смысле, что представляет собой совокупность утверждений (теорем), с необходимостью следующих из того набора аксиом, который положен в ее основу. Необходимо, чтобы аксиомы, лежащие в основании геометрии, были непротиворечивыми, то есть чтобы одна аксиома не противоречила другой. Кроме того, аксиомы должны быть независимыми. Утверждение не следует принимать за аксиому, если оно следует из других аксиом. Наконец, система аксиом должна быть полной, то есть геометрия должна полностью определяться принятой системой аксиом без обращения к каким-либо дополнительным аксиомам.

Построив различные геометрии, мы затем останавливаем свой выбор на одной из них и применяем ее к реальности. Мы выбираем такую геометрию, аксиомы и теоремы которой лучше всего соответствуют условиям нашего существования, но этот выбор не является частью математического рассуждения. Он всецело определяется экспериментом и жизненным опытом.

Наконец, математик может пойти еще дальше и отказаться от явного определения объектов, рассматриваемый в его геометрии, их свойств и отношений. Математик может выбрать некоторые элементы, назвав их «точками» и «прямыми», и некоторые отношения, которые он называет отношениями «положения», «величины» или «принадлежности». Не определяя в явном виде элементы и отношения, математик предполагает, что элементы удовлетворяют отношениям. Утверждения о том, что выбранные элементы удовлетворяют отношениям, служат аксиомами. Из этих аксиом математик выводит другие отношения. Формулировки этих отношений служат теоремами.

Такова схема абстрактной геометрии. Используемые в ней термины лишены смысла независимо от того, являются ли они такими словами, как «точка», «прямая», «пересечение» и т. д., заимствованными из обычной геометрии, или новыми специально изобретенными словами. Разумеется, гораздо легче придать смысл всем терминам с самого начала и рассматривать геометрию в какой-либо конкретной форме, особенно если этой конкретной форме нетрудно придать наглядный смысл, но вполне возможно строить геометрию абстрактно и лишь, затем придавать конкретный смысл ее терминам. Изменяя смысл терминов, мы можем придавать одной и той же геометрии несколько интерпретаций, даже если геометрия первоначально была построена в конкретной форме.

Нарисованная нами картина геометрии позволяет легче воспринимать основные идеи геометрии четырех или большего числа измерений. Подготовленный читатель не встретит трудностей в принятии системы аксиом, включающей в себя гипотезу о том, что существуют точки, лежащие вне данного пространства трех измерений, коль скоро «точки» и «пространство» — слова, лишенные смысла. Трудность, с которой встретится, читатель при попытке наглядно представить себе такую или любую другую геометрию, возникнет лишь тогда, когда он попытается применить ее к нашему или воображаемому миру и при этом выяснится, что применение геометрии приводит к некоторым противоречиям или выходит за пределы накопленного опыта.

Мы уже говорили о том, что одна и та же геометрия может иметь несколько интерпретаций. Так, некоторую двумерную геометрию можно интерпретировать как сферическую геометрию, если под термином «прямая» понимать окружность большого круга. При надлежащем определении длины или расстояния нашу обычную геометрию можно интерпретировать как геометрию, в которой окружности, проходящие через некоторую фиксированную точку, считаются прямыми. Можно было бы привести и другие примеры. Абстрактная геометрия четырех измерений допускает интерпретацию как конкретную геометрию, если под словом «точка» понимать прямую в нашем привычном трехмерном пространстве. Чтобы однозначно определить положение прямой, необходимо задать четыре числа, и все отношения в геометрии четырех измерений можно интерпретировать как отношения между обычными прямыми в трехмерном пространстве и фигурами, образованными из этих прямых.

Но все эти интерпретации кажутся весьма искусственными, и сама абстрактная геометрия представляет интерес главным образом для тех немногих, даже среди математиков, специалистов, которые посвятили себя изучению геометрии. Например, геометрия прямых в трехмерном пространстве представляет интерес и ценность сама по себе, но нас сейчас она будет интересовать главным образом как наиболее естественная интерпретация геометрии четырех измерений, в которой точки означают точки, прямые — прямые линии, а отношения имеют тот же смысл, в котором мы привыкли понимать их в двумерной и трехмерной геометриях, согласующихся с нашим повседневным опытом. Даже если математик использует абстрактную геометрию в какой-либо другой области математики, он всегда стремится интерпретировать ее наиболее естественным образом.

Самыми важными из геометрий, развитых при помощи различных систем аксиом, являются две геометрии, известные под названием неевклидовых геометрий Эти геометрии достаточно полно изложены в приводимом ниже очерке «Неевклидова геометрия и четвертое измерение». Ни Лобачевский, ни Бойяи не использовали абстрактный подход к геометрии, намеченной нами выше, тем не менее, как выяснилось, открытая ими гиперболическая геометрия великолепно согласуется с нашим повседневным опытом, если мы ограничимся рассмотрением небольшой части плоскости или небольшой области пространства. То же самое можно сказать и относительно эллиптической геометрии. Мы не можем даже утверждать, что геометрия нашего пространства евклидова и не является ни гиперболической, ни эллиптической. Неевклидовы геометрии в случае двух измерений можно применять к некоторым кривым поверхностям в обычном пространстве (то есть пространстве с евклидовой геометрией), если под термином прямая понимать геодезическую, или кратчайшую, линию. Иногда это утверждение принимают за объяснение неевклидовой геометрии и предполагают, что плоскость в неевклидовой геометрии не является плоскостью, а прямая — прямой.

Так же, как в обычном трехмерном евклидовом пространстве можно найти кривые поверхности, к которым применимы неевклидовы геометрии двух измерений, в четырехмерном пространстве можно указать искривленные трехмерные пространства, или гиперповерхности, к которым применимы трехмерные неевклидовы геометрии. Некоторые склонны усматривать в этом дополнительное объяснение неевклидовых геометрий, ошибочно полагая, будто наше пространство является одним из таких искривленных пространств в пространстве четырех измерений. Некоторые даже считают, что геометрия четырех измерений была специально создана для объяснения неевклидовых геометрий. Сами по себе неевклидовы геометрии не исходят из предположения о том, что пространство искривлено. Неевклидовы геометрии двух и трех измерений не содержат никаких предположений относительно четвертого измерения. Действительно, мы можем предположить, что четырехмерное пространство, если оно существует, само является неевклидовым (эллиптическим или гиперболическим) и что наше пространство также является трехмерным неевклидовым (эллиптическим или гиперболическим) пространством, причем для этого нам вовсе не потребуется вводить кривизну. Четырехмерная геометрия отнюдь не обязана своим происхождением неевклидовым геометриям. И в том, и в другом случае мы в равной мере имеем дело с отходом от традиций. И четырехмерная, и неевклидовы геометрии выросли из современного анализа общей природы геометрии, но геометрии высшего числа измерений обязаны своим происхождением естественному обобщению двумерной и трехмерной геометрий, и математик находит им многие применения, не уступающие по важности их применению в неевклидовых геометриях.

Понятие многомерных геометрий играет важную роль в математике главным образом из-за параллелизма, существующего между алгеброй и геометрией. Алгебра использовалась до некоторой степени при доказательстве теорем, в которых приходилось рассматривать пропорции и другие отношения между числовыми величинами, но одновременное изучение алгебры и геометрии было впервые систематически проведено в аналитической геометрии и впоследствии стало основой наиболее существенной части математики. Однако алгебра занимается изучением различных величин, одни из них соответствуют планиметрии, другие — стереометрии. Кроме того, в алгебре встречаются величины, которые можно было бы назвать одномерными. Тогда соответствующая им геометрия, как нетрудно понять, интерпретировалась бы как геометрия точек па прямой, хотя такая геометрия вряд ли заслуживала бы внимания, если бы не потребности алгебры.

На первый взгляд может показаться, что такая комбинация алгебры и геометрии служит главным образом целям геометрии, однако в действительности она оказывается необычайно полезной для алгебры. Происходит это двояким путем. Язык геометрии содержит множество удобных терминов для обозначения объектов, описать которые иным способом было бы необычайно трудно. Применяя наглядные представления геометрии к алгебраическим величинам, мы делаем последние менее абстрактными и более понятными. Такие преимущества мы получаем для изображения алгебраических величин, соответствующих геометриям одного, двух и трех измерении. Однако в алгебре не существует причин, по которым эти величины были бы выделены по сравнению с другими, и, привыкнув оперировать геометрическими терминами в алгебре, мы будем употреблять их применительно ко всем алгебраическим величинам и тем самым используем первое из двух упомянутых выше преимуществ, которые дает нам комбинация алгебры и геометрии.

Но именно из наглядных представлений геометрии математик черпает основную помощь, применяя геометрию к алгебре, а поскольку геометрии высшего числа измерений необходимы для того, чтобы параллелизм между геометрией и алгеброй был полным, то математик пытается воспользоваться наглядными геометрическими представлениями и в этом случае, мысленно перенося нас в некое пространство, к которому применимы эти геометрические представления. Сказанное в особенности относится к четырехмерной геометрии, соответствующей некоторым из наиболее важных алгебраических величин.

Итак, мы видим, что геометрия четырех и большего числа измерений важна математику по двум причинам. Представление о такой геометрии как логической системе теорем, выводимых из некоторой совокупности аксиом, важно для изучающего абстрактную геометрию, а представление о пространстве, к которому применимы возникающие геометрии, оказывается чрезвычайно полезным при различных попытках применения геометрии к другим областям математики. Ни один математик не может считать себя полностью «вооруженным», если в его арсенал не входят хотя бы некоторые сведения из геометрии высшего числа измерений.

II

Математики начали интересоваться понятиями n-мерных геометрий примерно в середине прошлого века. Кэли, Грассман, Риман, Клиффорд и некоторые другие математики стали использовать эти понятия в своих исследованиях. Время от времени другие математики также обращали внимание на различные любопытные факты из многомерной геометрии. Так, первый том American Journal of Mathematics открывается статьей профессора Ньюкома, в которой доказано, что сферу, не не разрывая, можно вывернуть наизнанку в четырехмерном пространстве, а в третьем томе того же журнала профессор Стрингхэм приводит полный список правильных тел в пространстве четырех измерений, соответствующих правильным многогранникам нашего трехмерного пространства. Появились и другие работы, в которых рассматривалась теория вращения четырехмерных тел, их пересечения и проекции в трехмерное пространство. Великий итальянский геометр Веронезе опубликовал обширный труд по геометрии п измерений с теоремами и подробными доказательствами, совсем как в тех учебниках, по которым изучают геометрию в наших школах. Четвертое измерение является первым из высших измерений, и лишь его мы будем рассматривать далее.

Геометрия четырех измерений важна не только математику, она привлекает и представителей других наук. Так, четырехмерная геометрия затрагивает проблемы пространства, которые относятся к компетенции философа. Попытки представить себе наглядно четвертое измерение заставляют нас напрягать наше пространственное воображение, и тем самым четырехмерная геометрия привлекает к себе внимание психологов. Попытки использовать теории гиперпространства для объяснения физических и других явлений делают четырехмерную геометрию предметом изучения физиков и других естествоиспытателей. Кроме того, широкий интерес вызывают многие любопытные формы и отношения, возникающие при изучении четырехмерной геометрии. Например, трехмерные симметричные тела, отличающиеся лишь расположением в пространстве, можно перевести друг в друга, повернув их в четырехмерном пространстве. Не меньший интерес вызывает плоскость, которая служит осью вращения, а также то обстоятельство, что в четырехмерном пространстве две полные плоскости иногда могут иметь лишь одну общую точку. Гибкую сферу в четырехмерном пространстве можно вывернуть наизнанку, не разрывая ее при этом. Для того чтобы извлечь любой предмет из закрытой коробки или запертого помещения, в четырехмерном пространстве вовсе не требуется взламывать стенки или проникать сквозь потолок и пол. Узел на веревке в четырехмерном пространстве можно развязать, не прикасаясь к концам веревки, а цепь разъять на отдельные звенья, не распиливая их на части!

Эти любопытные особенности пространства четырех измерений, хотя они и представляют несомненный интерес, чрезвычайно затрудняют изучение четырехмерной геометрии. Мы не только не в силах представить себе, как может происходить нечто подобное, но и сами факты здесь лежат за пределами нашего разумения. Изучая планиметрию и стереометрию, мы рисуем чертежи и строим модели. Мы постоянно видим сами изучаемые предметы, и поэтому, даже если они сложны, нам нетрудно мысленно представить их себе. Иначе обстоит дело с четырехмерной геометрией: она, как правило, занимается изучением таких предметов, которые никогда не встречались нам на опыте и которые мы даже с трудом сможем представить себе. Каждое утверждение четырехмерной геометрии кажется нам лишенным смысла. Особенно часто такое ощущение охватывает тех, кто впервые приступает к изучению четырехмерной геометрии. Легкость в восприятии ее утверждений, если она вообще достигается, приобретается лишь медленно и ценой постоянных упражнений. Однако в четырехмерной геометрии мы, как правило, сталкиваемся с такими вещами, которые ранее нам никогда не приходилось встречать, и поэтому представить их себе нам необычайно трудно. Пытаясь постичь некий предмет, мы, естественно, стремимся сначала представить его себе в общих чертах, ощутить его. Приступая к изучению четырехмерной геометрии, мы можем лишь запомнить различные отношения и ознакомиться с ними. Возможно, что со временем они, по крайней мере отчасти, смогут сравниться по живости восприятия с понятиями трехмерной геометрии. Не следует, однако, возлагать на это слишком большие надежды, чтобы потом нас не постигло разочарование. Наоборот, если мы с самого начала отдадим себе ясный отчет в том, сколь малого следует здесь ожидать, то такой «реалистический» подход к предмету позволит нам достичь больших успехов и в лучшей степени овладеть им.

Отсюда следует, что понять четырехмерную геометрию отнюдь не легко. Изучать ее можно лишь небольшими порциями, возвращаясь к прочитанному и тщательно обдумывая его. Столь трудный предмет полезно рассматривать с различных точек зрения и изучать в различных изложениях. Поэтому приводимые ниже краткие очерки, принадлежащие перу различных авторов, обладают несколькими преимуществами: они содержат известные повторы, написаны с различных точек зрения, невелики по объему, и их можно выбирать и изучать независимо друг от друга.

Все эти очерки либо не математические, либо написаны в популярной форме. Это обстоятельство не следует упускать из виду. Из сравнения геометрии в пространстве низших размерностей мы извлекаем аналогии для геометрии четырех измерений, и эти аналогии настолько полны, что четырехмерную геометрию можно необычайно подробно изложить, не прибегая к строгой манере рассуждений, принятых в математике. Указанные аналогии служат путеводной нитью даже для математиков, но сама четырехмерная геометрия не зависит от этих аналогий. Как система теорем и доказательств, она возникает из положенных в ее основу аксиом в результате процесса логического рассуждения так же, как возникают геометрии пространств низших размерностей. Если мы хотим убедиться в непротиворечивости четырехмерной геометрии, в ее истинности как математической системы, нам необходимо изучить ее математически. Нематематическое изложение следует воспринимать лишь как описание четырехмерной геометрии, и читатель должен ясно сознавать, что подобное описание предназначено отнюдь не для того, чтобы убедить его хотя бы в возможности построения четырехмерной геометрии. Оно преследует иную цель: показать читателю, что такое четырехмерная геометрия.

Существует другой способ, также позволяющий использовать принцип аналогии. Вообразив себе двумерные существа, обитающие на плоскости и неспособные воспринимать третье измерение, а тем более геометрию трехмерного пространства, мы получим яркое представление о том, как мы сами относимся к четырехмерному пространству и тем или иным понятиям многомерной геометрии. Подобный подход становится еще более интересным, если изложение ведется в форме художественного произведения, повествующего о жизни в двумерном мире. Такое произведение не обязательно должно входить во все детали двумерного существования. Слишком подробное описание жизни в двумерном мире перегрузило бы повествование излишними подробностями, которые отвлекли бы нас от главной цели. Но подобное произведение, написанное так, чтобы искусно ввести нас в некоторые из этих отношений, способно оказать нам огромную помощь в понимании того, как мы сами должны относиться к многомерной геометрии [8].

Геометрия четырех измерений, построенная на основе соответствующей системы аксиом и применяемая обычным способом к точкам, прямым и т. д., представляет собой вполне определенную систему. Однако при попытке облечь наши идеи в физическую форму и представить себе мир либо двух, либо четырех измерений, заполненный двумерной или четырехмерной материей, мы сталкиваемся с явным произволом. Даже для физика материя представляет собой загадку, и мы можем развивать различные теории материи подобно тому, как мы выводим геометрии из различных систем аксиом. Мы не можем утверждать, что до конца постигли все свойства реально существующей материи, поэтому наделение материи в воображаемом пространстве необычными свойствами нельзя считать полностью лишенным смысла. Так, чтобы выяснить, как следует относиться к воображаемому пространству четырех измерений, вполне допустимо предположить, что существует двумерный мир с его обитателями, даже если существование такого мира заведомо исключено. Аналогично мы могли бы предположить, что Луна населена разумными существами, и получить весьма живую картину Лунной поверхности с точки зрения ее обитателей.

Итак, предположим, что двумерный мир существует. Следующая, не менее интересная задача состоит в том, чтобы понять, как далеко мы можем продвинуться в его описании. Например, можно предположить, что двумерная материя в действительности трехмерна и что двумерные существа также трехмерны. Для этого обитателям плоского мира мы можем приписать небольшую» толщину в третьем измерении или по крайней мере снабдить их некой толщиной, которую они сами воспринимать не могут. Но точно так же можно предположить, что обитатели плоского мира двумерны, и проследить, к чему приводит подобное допущение. Любую материальную частицу мы условимся рассматривать как точку, в которой сходятся или от которой исходят притягивающие или отталкивающие силы. Нетрудно предположить, что все эти силы расположены в одной плоскости. Двумерное существо, встретив на своем пути любой объект, сможет распознать, твердый он (точнее, его контур) или мягкий. Световые волны, распространяясь по плоскости, могут отражаться от различных предметов, точнее, от их края, и создавать на сетчатой оболочке глаза двумерных существ изображение. Двумерные волны могут возбуждать особую звукочувствительную струну в слуховой полости двумерных существ. Предметы могут удерживаться вместе и прикрепляться друг к другу либо путем прилипания, либо при помощи неких зажимов. Механические устройства и тела живых существ в плоском мире должны были бы иметь сравнительно простую структуру, если там, так же как в нашем мире, изолированные друг от друга предметы практически не взаимодействуют друг с другом. Ни в одном двумерном предмете не могло бы быть сквозных отверстий. Трубы не могли бы существовать в двумерном мире, Если бы в двумерном доме одновременно открылись две двери или распахнулось несколько окон, то такой дом развалился бы на отдельные части. По-видимому, существование в двумерном мире лишь весьма несложных форм и структур отразилось бы на сравнительно низком уровне умственного развития его обитателей, но в приведенной выше воображаемой структуре двумерного мира нет ничего невозможного.

Обратившись к одновременному рассмотрению двумерного и трехмерного пространств, то есть двумерного пространства, вложенного в трехмерное пространство, мы без труда обнаружим, что сами пространства можно выбирать в значительной мере произвольно. Если при том или ином выборе нам встретятся какие-нибудь трудности, то ими можно пренебречь ради наглядности аналогии. Однако вопрос о существовании двумерного мира в трехмерном пространстве интересен и сам по себе, поэтому мы попытаемся рассмотреть его несколько подробнее. Предположим, что двумерная материальная плоскость, населенная нашими двумерными существами, обладает способностью отражать часть света, падающего на нее извне, в силу чего двумерный мир виден трехмерным существам. Рассматривая обитателей плоского мира, трехмерные существа могут без труда заглядывать не только внутрь домов и в закрытые помещения, но и во внутренности двумерных существ. Если трехмерные существа к тому же обладают способностью извлекать предметы из плоскости и возвращать их обратно, то они смогут «похитить» любой предмет из закрытого помещения, сколь бы надежными ни были его замки.

Весьма интересно было бы изучение законов четырехмерной материй, четырехмерной физики, однако мы ограничимся лишь общим описанием различных возникающих здесь форм и возможных видов движения, не вдаваясь в более строгую теорию и не прибегая к точным научным терминам. Наша цель состоит лишь в том, чтобы дать читателю лишь общее представление о четырехмерном пространстве, нарисовать по возможности более точную картину, и мы при описании четырехмерных существ будем накладывать или снимать ограничения, руководствуясь лишь удобством изложения.

Мы различаем формы и положения предметов главным образом с помощью зрения. Органы зрения существа, вынужденного жить в пространстве некоторой вполне определенной размерности, по-видимому, приспособлены к размерности его пространства. Так, картина, образующаяся на сетчатой оболочке нашего глаза двумерна, поскольку сетчатая оболочка нашего глаза представляет собой двумерную поверхность. У двумерного существа, лишенного способности воспринимать что-либо вне его плоскости, сетчатая оболочка была бы одномерной или по крайней мере образ предмета из его мира представлялся бы ему в виде линии, причем различные предметы отличались бы по длине, цвету и степени освещенности этих линий. Сетчатая оболочка четырехмерного существа должна была бы быть трехмерной, если предположить, что четырехмерное существо должно различать все лучи света, расположенные внутри данного угла зрения. Действительно, четырехмерное существо может видеть лишь наружную поверхность четырехмерного предмета, а поверхность четырехмерного предмета трехмерна.

Представить себе наглядно, как выглядит четырехмерное тело с его трехмерной границей, нам, разумеется, трудно, поэтому мы можем попытаться получить косвенное представление о форме четырехмерного тела, предположив, что некоторое трехмерное существо — личность, аналогичная нам, обладает способностью проходить сквозь ряд параллельных 3-пространств (трехмерных пространств) и в каждом 3-пространстве рассматривать ту часть четырехмерного тела, которая в нем лежит, то есть сечение четырехмерного тела этим 3-пространством. Аналогичным образом мы могли бы предположить, что некое двумерное существо способно проходить сквозь ряд параллельных плоскостей и в каждой такой плоскости рассматривать сечение интересующего его трехмерного тела. Сечение четырехмерного тела, которое мы могли бы увидеть, имело бы вид трехмерного тела, а его поверхность составляла бы лишь часть трехмерной поверхности четырехмерного тела.

Существует другой, хотя и тесно связанный с только что изложенным способ изучения четырехмерных тел, которым мы также можем воспользоваться. Представим себе, что мы можем переходить из одного 3-пространства в другое, перпендикулярное 3-пространство. Переход этот осуществляется следующим образом. Отбросив одно из трех взаимно перпендикулярных направлений в нашем пространстве, мы присоединим к двум оставшимся четвертое направление, перпендикулярное нашему трехмерному пространству, и получим новое 3-пространство. Сечение четырехмерного тела любым из 3-пространств мы опишем по тому, что мы увидим своими глазами, оказавшись в этом 3-пространстве. Именно это мы и сделаем применительно к различным сечениям четырехмерного тела, получающимся при рассмотрении различных взаимно перпендикулярных 3-пространств во всех точках нашего трехмерного пространства.

Рассмотрим несколько примеров. Первое, с чем нам придется столкнуться при изучении четырехмерной геометрии, — это прямая, перпендикулярная 3-пространству. Так называется прямая, выходящая из произвольной точки нашего пространства в некотором новом, четвертом, направлении, перпендикулярном всем прямым исходного пространства, проходящим через данную точку[9]. Если мы станем двигаться вдоль одного из измерений нашего пространства, наблюдая при этом лишь за той его частью, которая лежит в некоторой плоскости, и новым, четвертым, измерением, то мы увидим плоскость и выходящую из нее прямую, перпендикулярную всем прямым, лежащим в данной плоскости, то есть хорошо знакомую нам картину.

В качестве другого примера рассмотрим две абсолютно перпендикулярные плоскости. Если мы выберем плоскость, проходящую через любую точку O, и прямую, перпендикулярную выбранной плоскости и проходящую через точку O, причем и прямая, и плоскость лежат в нашем исходном пространстве, а затем рассмотрим прямую, проходящую через точку в четвертом направлении, перпендикулярном всем прямым нашего пространства, проходящим через точку O, то получим плоскость, проходящую через точку O, и две прямые, каждая из которых перпендикулярна этой плоскости и другой прямой. Эти две прямые в свою очередь определяют плоскость, в которой каждая прямая, проходящая через точку O, перпендикулярна первой плоскости. Эти две плоскости называются абсолютно перпендикулярными. Рассматривая абсолютно перпендикулярные плоскости из любого 3-пространства, мы могли бы лишь увидеть одну из плоскостей и какую-то одну из прямых, лежащих в другой плоскости, а именно прямую, проходящую через точку O перпендикулярно видимой нами плоскости. Другая плоскость пересекает наше пространство вдоль этой прямой. Обе абсолютно перпендикулярные плоскости пересекаются лишь в точке O. Действительно, две плоскости, не лежащие полностью в одном 3-пространстве, не могут иметь более одной общей точки, а когда две плоскости имеют ровно одну общую точку, то самое большее, что мы могли бы увидеть из любого 3-пространства, это одну из плоскостей и одну из прямых, лежащих в другой плоскости.

Если две плоскости абсолютно перпендикулярны третьей в двух точках O и O', то они лежат в одном и том же 3-пространстве. В этом 3-пространстве мы могли бы наблюдать обе плоскости полностью и лишь одну-единственную прямую, лежащую в третьей плоскости. Эта прямая проходит через точки O и O', и нам бы казалось, что эта прямая перпендикулярна двум первым плоскостям. С другой стороны, в 3-пространстве, содержащем третью плоскость, мы могли бы рассмотреть ее целиком, но каждая из двух абсолютно перпендикулярных ей плоскостей выродилась бы в прямую.

III

Но продолжим наше знакомство с четырехмерной геометрией.

Если две плоскости абсолютно перпендикулярны в точке O, то любую точку одной из них можно полностью обвести вокруг точки O и другой плоскости, оставаясь при этом все время на одном и том же расстоянии от точки O и другой плоскости. Следовательно, в пространстве четырех измерений мы можем совершить оборот вокруг плоскости так же, как в трехмерном пространстве мы совершаем оборот вокруг прямой. Двумерное существо не может обойти вокруг прямой в своей плоскости, поскольку прямая полностью разделяет плоскость. В трехмерном пространстве мы не можем обойти вокруг плоскости, ибо плоскость полностью разделяет наше пространство. Но в пространстве четырех измерений плоскости, хотя она и обладает двумя измерениями, недостает двух измерений, и поэтому мы можем обойти вокруг плоскости, оставаясь все время на заданном расстоянии от любой выбранной на ней точки. Если мы отбросим одно из двух измерений плоскости, превратив ее тем самым из плоскости в прямую, и перейдем в 3-пространство, содержащее абсолютно перпендикулярную плоскость, то мы сможем наблюдать за вращением одной плоскости вокруг другой: нам будет казаться, что исходная плоскость поворачивается вокруг некоторой прямой.

Плоскость может вращаться по самой себе вокруг одной из своих точек. Если две плоскости абсолютно перпендикулярны в точке O, то любая из них, вращаясь по самой себе вокруг точки O, остается абсолютно перпендикулярной другой плоскости. В этом случае можно сказать, что подвижная плоскость вращается вокруг фиксированной плоскости как вокруг оси, а саму фиксированную плоскость назвать осевой плоскостью. В каждой точке фиксированной плоскости можно построить абсолютно перпендикулярную плоскость. Все абсолютно перпендикулярные плоскости могут вращаться вокруг одной и той же исходной фиксированной плоскости. То же происходит и в нашем трехмерном пространстве, если мы выберем фиксированную прямую и в каждой ее точке построим перпендикулярную ей плоскость. Мы можем считать, что тела в нашем пространстве или в части пространства вращаются вокруг фиксированной оси. Аналогично можно считать, что тела в четырехмерном пространстве или в части этого пространства вращаются вокруг фиксированной плоскости как вокруг осевой плоскости. При таком вращении части тела не претерпевают деформации. Они сохраняют свою форму неизменной, и поэтому отпадает необходимость предполагать, что они упруги.

Если небольшие деформации считать допустимыми, то в качестве оси вращения можно выбрать кривую поверхность. Назовем материальной поверхностью тело, которое имеет значительную протяженность в двух измерениях и очень малые размеры в двух других измерениях. Пользуясь трехмерной аналогией, мы можем сказать, что кусок ткани имеет значительную протяженность в двух измерениях и очень малые размеры в третьем. Нить имеет существенные размеры лишь в одном измерении, а ее размеры в двух других измерениях очень малы. Если материальная поверхность обладает гибкостью, то ее можно перекрутить так, чтобы две противоположные стороны материальной поверхности поменялись местами. Материальная поверхность, подобно куску ткани, имеющему небольшую толщину в направлении четвертого измерения, ограничена поверхностями со всех сторон.

Можно сказать, что поворот гибкой материальной поверхности на 180° переводит две стороны, первоначально находившиеся в нашем пространстве, снова в наше пространство, но при этом меняет их местами: каждая сторона после поворота занимает то место, которое первоначально занимала другая. Различные части материальной поверхности при таком повороте не взаимодействуют между собой, поэтому поворачивать можно любую материальную поверхность, независимо от того, является ли она открытой частью некоторой большей материальной поверхности или замкнута, наподобие полого резинового шара. В нашем пространстве резиновую ленту, изгибая, можно вывернуть наизнанку. Это в точности соответствует выворачиванию сферы в пространстве четырех измерений.

Симметричные фигуры в четырехмерном пространстве лучше всего рассматривать, изучая в отдельности симметрию относительно точки, прямой или плоскости.

Фигуры на плоскости, симметричные относительно Точки, равны, ибо каждую из них поворотом вокруг точки — центра симметрии — можно совместить с другой фигурой. Однако фигуры на плоскости, симметричные Относительно прямой, нельзя совместить, не выводя из плоскости, не поворачивая в пространстве. Двумерные существа могли бы рассматривать такие фигуры как истинно симметричные, ибо их соответственные части равны, но расположены в обратном порядке, что мешает их полному совпадению.

Рассмотрим симметрию в трехмерном пространстве. Фигуры, симметричные относительно прямой, можно привести в совпадение, поворачивая одну из них вокруг Оси симметрии. С другой стороны, фигуры, симметричные относительно точки и плоскости, если только они не Являются плоскими фигурами, следует считать истинно симметричными, ибо никаким движением в пространстве совместить их невозможно. Фигуры, симметричные относительно плоскости, можно превратить в фигуры, симметричные относительно точки, а фигуры, симметричные относительно точки, — в фигуры, симметричные относительно плоскости. Предположим, например, что две фигуры симметричны относительно плоскости. Соединим их жестким стержнем, перпендикулярным плоскости симметрии, а нары соответствующих точек свяжем прямыми, например упругими нитями. Если мы повернем одну из фигур на пол-оборота вокруг стержня как вокруг оси, то упругие нити скрестятся в точке, где ось вращения — стержень пересекает исходную плоскость симметрии; относительно этой точки фигуры станут симметричными.

В четырехмерном пространстве фигуры могут быть симметричными относительно точки, прямой, плоскости или 3-пространства. Фигуры, симметричные относительно точки, можно превратить в фигуры, симметричные относительно плоскости, и наоборот, а фигуры, симметричные относительно прямой, — в фигуры, симметричные относительно 3-пространства, и наоборот. Фигуры, симметричные относительно 3-пространства, являются истинно симметричными, и их нельзя совместить никаким движением в четырехмерном пространстве. Можно сказать, что части истинно симметричных фигур расположены в обратном порядке. Но фигуры, симметричные относительно плоскости, можно совместить, повернув одну из них вокруг плоскости, как вокруг плоскости симметрии, на 180°, независимо от того, являются ли рассматриваемые фигуры четырехмерными или трехмерными. Таким образом, для четырехмерных существ то, что мы называем симметричными фигурами, отличается, лишь положением в пространстве.

Это весьма удивительный факт. Правая перчатка, повернутая в пространстве четырех измерений, становится левой перчаткой, а правый ботинок превращается в левый. Человек, привыкший работать правой рукой, после того, как его повернут в четырехмерном пространстве, превратится в левшу. Все операции он будет по-прежнему производить той же рукой, что и до поворота в четырехмерном пространстве, но всем окружающим будет казаться, что он работает левой рукой. При повороте точка зрения человека «изменилась на противоположную», поэтому ему кажется, что изменилось все окружающее. Обычные буквы представляются ему зеркальными, как шрифт наборщику, стрелки часов идут в противоположном направлении, а весь мир превращается в свое зеркальное отражение.

Между поворотом предмета в четырехмерном пространстве и выворачиванием его наизнанку существует различие, которое не всегда понимают. Правая перчатка, вывернутая наизнанку в трехмерном пространстве, превращается в левую перчатку. Правая перчатка, повернутая в пространстве четырех измерений, также становится левой перчаткой, но, когда перчатку поворачивают в четырехмерном пространстве, она не выворачивается наизнанку. С другой стороны, правую перчатку можно вывернуть наизнанку в четырехмерном пространстве так же, как и замкнутую резиновую оболочку — мяч. Как происходит такое выворачивание, мы рассказали в предыдущем разделе. При выворачивании в четырехмерном пространстве пальцы перчатки не нужно продевать сквозь отверстие, через которое мы всовываем в перчатку руку, каждая часть перчатки-поворачивается на своем месте. При таком выворачивании в четырехмерном пространстве перчатка, быть может, слегка натянется, а отдельные ее части чуть изменят свое положение. Однако при выворачивании в четырехмерном пространстве правая перчатка не станет левой, а по-прежнему останется правой перчаткой. Аналогию с выворачиванием в четырехмерном пространстве можно усмотреть на плоскости, если взять почти замкнутую фигуру. Распрямив ее в отрезок прямой, мы можем превратить фигуру в симметричную ей: для этого лишь требуется изогнуть ее в другую сторону, то есть вывернуть наизнанку. Весь процесс выворачивания происходит при этом в плоскости и доступен двумерному существу. Однако ту же фигуру можно превратить в симметричную ей и путем поворота в трехмерном пространстве, но при этом она не выворачивается наизнанку. С другой стороны, если наша плоская фигура обладает достаточной гибкостью, то ее можно вывернуть наизнанку, перекрутив каждую часть на 180°, при этом она не перейдет в симметричную фигуру.

Гипертело, то есть часть четырехмерного пространства, можно разделить на две части 3-пространством. Таким образом, сечение, разрезающее гипертело на две части, окажется трехмерным. Плоскостью невозможно разделить гипертело на две части, так же как прямой нельзя разделить на две части тело в трехмерном пространстве. Прямая может проходить через тело в трехмерном пространстве, прорезая в нем дырочку. Прямая может проходить и сквозь гипертело, также прорезая в нем мельчайшее отверстие. Стержень, или материальная прямая, имеющий значительную протяженность вдоль одного главного измерения и очень маленькие размеры по трем остальным измерениям, пронзит гипертело, образовав в нем отверстие. Но гипертело можно пронзить и плоской пластинкой, имеющей сравнительно большую протяженность по двум измерениям и очень маленькую протяженность по двум другим. Пластина, прорезающая гипертело, могла бы иметь бесконечную протяженность по двум главным направлениям, но гипертело при этом не распалось бы на части. Таким образом, отверстия в пространстве четырех измерений бывают двух типов: одномерные и двумерные.

Одномерное отверстие может проходить сквозь четырехмерное тело в направлении, перпендикулярном нашему трехмерному пространству, и тогда четырехмерное тело покажется нам полностью замкнутым, но полым, наподобие полой сферической оболочки. Сквозь такое отверстие может проходить стержень или нить, которые будут удерживаться в нем жестко, но стержень или нить, проходящие сквозь, двумерное отверстие, будут сразу же выскальзывать, если мы потянем их за конец. Стержень, изогнутый так, что концы его можно соединить и приварить один к другому, превращается в кольцо. Отверстие этого кольца двумерно. Сцепить два кольца невозможно, но в четырехмерном пространстве мы легко можем сцепить кольцо и полую сферу. Более того, чередуя кольца и полые сферы, можно построить целую цепочку. В обычном узле один из концов веревки проходит сквозь кольцо, образованное самой веревкой, и тотчас же скрывается в четвертом измерении[10].

Колесо из четырехмерной материи в двух измерениях имеет форму окружности, а его размеры в двух остальных измерениях очень малы. Осью такого колеса служит не стержень, а плоская пластина. Во всех направлениях, лежащих в ее плоскости[11], осевая пластина может простираться до бесконечности, не мешая колесу свободно вращаться. Колесо можно снять с осевой пластины, если только оно не закреплено на ней, так же, как трехмерное колесо свободно снимается со своей оси. Находясь в 3-пространстве, мы увидим осевую пластину и два противоположных радиуса (две спицы) четырехмерного колеса, причем спицы будут казаться нам не связанными между собой. Так мы можем увидеть двумерное отверстие, а также все колесо с отверстием и осевым стержнем, высекаемым из осевой пластины нашим 3-пространством.

Мы можем жестко скрепить колесо с осевой пластиной так, что она будет поворачиваться вместе с колесом, при этом четырехмерное колесо будет вращаться в своей плоскости, а осевая пластина поворачиваться по самой себе. На одну осевую пластину можно насадить несколько колес, расположив различные колеса в различных точках пластины. Если эти колеса жестко скреплены с осевой пластиной, то, повернув одно из них, мы можем повернуть все остальные. Так мы получаем возможность строить различные механизмы в пространстве четырех измерений.

Ничто не мешает нам выбрать в качестве осевой пластины колесо. Оба колеса — основное и ось — можно скрепить в их центрах так, чтобы они были абсолютно перпендикулярны. Такая фигура может вращаться двумя способами: плоскость каждого из четырехмерных колес служит осевой плоскостью вращения другого, а плоскость другого колеса — плоскостью вращения.

Четырехмерное колесо может быть дважды круговым. В этом случае плоскость, абсолютно перпендикулярная колесу, пересекает его по малой окружности, а плоскость, совпадающая с плоскостью самого колеса, пересекает колесо по большой окружности. Дважды круговое колесо может вращаться двумя различными способами и в каждом из двух случаев совершать полные обороты, не проходя через новые части четырехмерного пространства.

Рассмотрим сферическое четырехмерное колесо. Это тело, имеющее вид сферы в трех измерениях и очень небольшой размер в четвертом измерении. Такое колесо с одномерным отверстием, сквозь которое можно пропустить осевой стержень, будет вращаться, но его движение не ограничивается определенным направлением вращения, как это происходит с плоским колесом, вращающимся в одной плоскости. Для механизма, требующего определенное направление вращения, мы будем пользоваться плоскими колесами с осевыми пластинками[12]. Сферическое колесо можно использовать для четырехмерных экипажей. Если четырехмерные существа живут на четырехмерной Земле, то есть на ее трехмерной границе, то экипаж с четырьмя колесами любого рода или с большим числом колес оказался бы незаменимым при путешествиях. Экипаж с плоскими колесами мог бы передвигаться лишь по прямой без трения между колесом и поверхностью земли. Экипаж со сферическими колесами мог бы передвигаться по плоскости в любом направлении без трения, которое возникало бы лишь при переходе из одной плоскости в другую.

Для устойчивости экипаж должен был бы обладать по крайней мере четырьмя колесами, а последние должны были бы иметь по крайней мере две оси. Даже если экипаж имел бы плоские колеса и осевые пластины, нам понадобились бы по крайней мере две такие пластины. Для того чтобы находиться в равновесии, необходимо иметь четыре точки опоры, причем все они не должны быть расположены в одной плоскости.

Трудно представить себе, каким образом границы гипертел, то есть конечных частей четырехмерного пространства, могут быть трехмерными. Ясно, что этого требует аналогия, но понять, каким образом каждая точка, лежащая внутри трехмерного тела, может разделять две части, на которые рассекает четырехмерное пространство это трехмерное тело, довольно трудно. Находясь в любой точке внутри трехмерной границы гипертела, мы можем выйти из нее по трем взаимно перпендикулярным направлениям, оставаясь при этом внутри границы. Столько же взаимно перпендикулярных направлений мы насчитываем в нашем трехмерном пространстве. Нам придется идти по кривой траектории, если граница гипертела искривлена, но в начале пути мы можем выйти из точки по трем взаимно перпендикулярным направлениям точно так же, как в нашем трехмерном пространстве.

Гипертело, ограниченное многогранниками, можно вскрыть и разложить многогранники в одном 3-пространстве. Обращая этот процесс, мы можем образовать границу гипертела, составляя ее из надлежащим образом подобранных трехмерных тел в 3-пространстве и поворачивая их затем вокруг общих граней так, чтобы в конце концов они образовали границу гипертела. Трехмерные тела при этом не деформируются и не распадаются. Так, если мы возьмем куб, разместим на его гранях шесть других равных ему кубов и поместим еще один куб поверх одного из шести кубов, то такую конструкцию можно повернуть так, чтобы она образовала гиперкуб, или тессеракт, который упоминается в некоторых из приводимых ниже очерков. Такое построение гипертел аналогично построению многогранников из плоских разверток. Аналогия очень ясная, настолько, что мы можем не сомневаться в итоге нашего построения, хотя оно и приводит к удивительным результатам.

Упомянем здесь некоторые из наиболее простых фигур четырехмерной геометрии, аналогичные фигурам, изучаемым нашей стереометрией.

Первые фигуры, о которых следовало бы упомянуть, — это гиперпризма и гиперцилиндр с параллельными линейными элементами, а также гиперпирамида и гиперконус с линейными элементами, пересекающимися в вершине. Основаниями всех этих гипертел служат многогранники или некие другие трехмерные тела, а их линейные элементы исходят из трехмерного пространства, в котором лежит основание. Гиперкуб является частным случаем гиперпризмы.

Простейший случай гиперпирамиды — фигура, называемая пентагедроидом. В основании ее лежит тетраэдр, или треугольная пирамида. Таким образом, пентагедроид имеет всего пять вершин. Любые пять точек, не лежащие в одном 3-пространстве, можно считать вершинами некоторого пентагедроида. Если из этих пяти точек мы будем всеми возможными способами выбирать но четыре, то получим пять тетраэдров. Следовательно, пентагедроид можно получить как гиперпирамиду пятью различными способами. Тетраэдры расположены так, что имеют попарно общие грани, каждый тетраэдр имеет одну общую грань с каждым из остальных. Эти тетраэдры можно разрезать так, чтобы они образовали трехмерную развертку пентагедроида, то есть чтобы их можно было развернуть в одном 3-пространстве. Трехмерная развертка пентагедроида имеет вид тетраэдра, на каждой из граней которого построено еще по одному тетраэдру. Пентагедроид образуется, когда эти тетраэдры Определенным образом поворачиваются. При таком повороте ни один из тетраэдров не искажается и не отделяется от другого. Сложенные вместе, пять тетраэдров образуют одну замкнутую фигуру, заключающую внутри себя конечную часть гиперпространства. Процесс получения гипертела из его трехмерной развертки аналогичен процессу получения трехмерного тетраэдра из его плоской развертки.

В общем случае граница гиперпирамиды состоит из многогранника, лежащего в основании, и боковых пирамид, покоящихся на гранях основания. Боковые пирамиды примыкают друг к другу общими гранями так же, как грани многогранника, лежащего в основании, примыкают друг к другу общими ребрами.

Гиперпирамиду, в основании которой лежит пирамида, можно рассматривать как гиперпирамиду двумя способами. В каждом из двух случаев вершиной гиперпирамиды служит одна из вершин трехмерной пирамиды, лежащей в основании гиперпирамиды при ином способе рассмотрения. Трехмерные пирамиды, служащие основаниями, имеют общее основание — многоугольник. Таким образом, гиперпирамида определяется многоугольником и двумя точками, не лежащими в одном 3-пространстве с этим многоугольником. Прямую, проходящую через две указанные точки, можно было бы назвать вершинной прямой. Граница гиперсферы состоит из двух пирамид и части, порождаемой треугольником, размеры и форма которого могут изменяться, но одна сторона остается неизменной, а противоположная ей вершина пробегает все точки некоторого многоугольника, не лежащего в одном 3-пространстве с фиксированной стороной. Производящий треугольник иногда называют треугольным элементом.

Аналогично гиперконус, основанием которого служит конус, можно рассматривать двумя различными способами. Его границей служат два конуса и некоторая часть, порожденная треугольником с одной фиксированной стороной. Вершина треугольника, противоположная фиксированной стороне, пробегает плоскую кривую, но лежащую в одном 3-пространстве с фиксированной стороной.

Граница гиперпризмы состоит из двух многогранников, служащих основаниями, и боковых призм. Основаниями боковых призм служат грани многогранников, лежащих в основании гиперпризмы. Боковые призмы примыкают друг к другу вдоль общих боковых граней.

Если основаниями гиперпризмы служат призмы, то ее боковая граница состоит из двух призм и набора параллелепипедов. Такую фигуру можно рассматривать как гиперпризму двумя способами. Две призмы, которые в одном случае являются боковыми, в другом служат основаниями. Все четыре призмы последовательно соединены друг с другом основаниями. Каждый из параллелепипедов двумя противоположными гранями примыкает к двум соседним параллелепипедам, а остальные его четыре грани примыкают к боковым граням; каждой из четырех призм. Если четыре призмы отсечь от параллелепипедов и провести разрез вдоль одного из общих оснований, то их можно развернуть в одном 3-пространстве. Если к тому же призмы были прямыми, то мы получим одну прямую призму. Параллелепипеды можно разъединить, проводя разрез вдоль одной из общих граней и так же развернуть их в одном 3-пространстве, при этом, если параллелепипеды были прямоугольными, мы получим одну прямую призму (параллелепипед). Взяв одну из больших призм, мы сможем приставить ее под углом к другой большой призме так, чтобы их общие грани совместились. Затем одну из призм можно будет обкатывать по другой призме, при этом все соответственные грани будут совмещаться. В исходной фигуре обе призмы были свернуты вокруг друг друга так, что каждая точка боковой поверхности одной из призм приходилась на соответствующую точку, принадлежащую боковой поверхности другой призмы, и обе призмы вместе замыкали внутри себя конечную часть четырехмерного пространства.

Если мы выберем из четырех призм четыре элемента, образующие параллелограмм, то все параллелепипеды мы получим, двигая этот параллелограмм параллельно самому себе. При этом вершины его будут описывать основания призм. Набор из четырех призм можно также получить, передвигая параллельно самим себе многоугольные основания. При этом вершины оснований будут описывать параллелограммы, вдоль которых параллелепипеды примыкают друг к другу. Таким образом, параллелограмм и многоугольник играют роль производящих элементов, причем каждый служит для другого направляющей при получении соответствующей части гиперпризмы.

Аналогичным образом можно построить гиперцилиндр с двумя цилиндрическими основаниями. Часть боковой поверхности гиперцилиндра состоит из двух цилиндров, соединяющих концы цилиндрических оснований, поэтому всю фигуру можно рассматривать как гиперцилиндр двумя способами. Из четырех цилиндров можно выбрать четыре элемента, образующие параллелограмм, а остальную часть боковой границы можно построить, двигая этот параллелограмм параллельно самому себе. При этом его вершины будут описывать основания цилиндров. Поскольку цилиндры можно получить аналогичным способом, двигая плоскую кривую параллельно самой себе вокруг любого из параллелограммов, то параллелограмм и замкнутая плоская кривая позволяют получить весь гиперцилиндр. При построении одной его части параллелограмм служит производящим элементом, а замкнутая плоская кривая — направляющей, при получении другой части роли элементов меняются.

Таким образом, гиперпризму, основаниями которой служат призмы, и гиперцилиндр с цилиндрическими основаниями можно рассматривать как частные случаи некоторого класса гипертел, допускающего следующие описания. Расположим два многоугольника, две замкнутые плоские кривые или многоугольник и плоскую кривую так, чтобы они пересекались, но не лежали в одном 3-пространстве. Их плоскости будут пересекаться лишь в той точке, где пересекаются сами кривые. Один многоугольник или одну кривую начнем двигать параллельно себе вокруг другой. При этом мы получим трехмерную фигуру в форме кольца (причем не только наружную поверхность, но и все внутренние точки фигуры). Двигая другой многоугольник или кривую вокруг первого, мы точно таким же образом получим вторую фигуру в форме кольца. Эти две кольцеобразные фигуры плотно примыкают друг к другу и образуют границу гипертела, внутри которой заключена конечная часть четырехмерного пространства. Такое гипертело можно назвать двойной призмой, призмоцилиндром или двойным цилиндром в зависимости от того, что мы выбрали вначале: два многоугольника, многоугольник и кривую или две кривые. Если плоскости двух производящих многоугольников абсолютно перпендикулярны, то мы получим прямую двойную призму. Аналогично можно получить и прямые фигуры остальных двух типов.

Если любую часть границы отделить от остальной и провести разрез вдоль одного из производящих элементов, то оставшаяся часть границы развернется в одном 3-пространстве, аналогичном нашему трехмерному пространству. Если плоскости двух производящих элементов абсолютно перпендикулярны, то каждая часть границы при развертывании в 3-пространстве превращается в прямую призму или в прямой цилиндр. В этом случае исходные фигуры можно описать иначе. Например, для того чтобы построить прямую двойную призму, достаточно взять две прямые призмы, выбрав их так, чтобы высота каждой из них совпадала с периметром другой призмы. Перегнув их относительно друг друга, мы можем совместить все соответствующие грани и получить трехмерное тело, внутри которого будет заключена конечная часть четырехмерного пространства. Аналогично можно построить прямой призмоцилиндр или прямой двойной цилиндр, взяв в одном случае призму и цилиндр, а в другом два цилиндра.

Если при построении двойного цилиндра мы возьмем два круговых цилиндра, то получившееся гипертело можно назвать цилиндром двойного вращения. Такой цилиндр будет вращаться двумя независимыми способами вокруг двух абсолютно перпендикулярных плоскостей. Плоскости вращения образованы осями двух цилиндров. Каждое из вращений происходит следующим образом. Одна из осей вращается по самой себе, а другая, совпадающая с осевой плоскостью, остается неподвижной.

Если один из цилиндров имеет очень маленький радиус по сравнению с радиусом другого цилиндра, в силу чего у второго цилиндра очень маленькая высота (один цилиндр напоминает веревку, а другой — колесо[13]), то получающееся при этом гипертело можно назвать дважды круговым колесом.

Изучая четырехмерное пространство, мы непременно встретимся с еще одной фигурой, а именно с гиперсферой, геометрическим местом точек, равноудаленных от некоторой данной точки. Иногда гиперсферой называют гипертело, то есть конечную часть гиперпространства, заключенную внутри этого геометрического места, а само геометрическое место называют границей, или гиперповерхностью, гиперсферы. При таком понимании гиперсфера (то есть граница) трехмерна, и на ней реализуется трехмерная эллиптическая неевклидова геометрий. Впрочем, это не удивительно, поскольку обычную сферическую геометрию можно рассматривать как двумерную эллиптическую неевклидову геометрию.

Сформулируем некоторые правила, позволяющие вычислять размеры гипертел в геометрии четырех измерений. Известны правила, позволяющие вычислять объем границы гипертел или части этой границы, а также гиперобъем, то есть величину части 4-пространства, заключенной внутри границы. В большинстве случаев эти правила выводятся так же, как соответствующие правила для площади и объема в обычной геометрии, или могут быть получены методами математического анализа. Все приводимые ниже правила применимы к правильным фигурам, и большинство из них допускает обобщение на некоторые другие классы фигур, но мы не будем здесь останавливаться на этом.

Гиперпризма и гиперцилиндр.

Боковой объем = площадь поверхности основания, умноженная на высоту.

Гиперобъем = объем основания, умноженный на высоту.

Гиперпирамида и гиперконус.

Боковой объем = площадь поверхности основания, умноженная на ⅓ высоты.

Гиперобъем = объем основания, умноженный на ¼ высоты.

Двойная призма, призмоцилиндр и двойной цилиндр.

Объем одной части границы = площадь, заключенная внутри производящего многоугольника или кривой, умноженная на периметр направляющей.

Полный объем границы равен сумме двух таких произведений. Можно сказать, что полный объем равен сумме двух произведений, каждое из которых образовано при умножении площади, заключенной внутри производящего многоугольника или кривой, на периметр другого многоугольника или кривой.

Гиперобъем = произведение площадей, заключенных внутри производящих, многоугольников или кривых.

Для цилиндра двойного вращения с радиусами R и R' справедливы следующие формулы:

Объем = 2π²RR'(R + R').

Гиперобъем = πR²R'².

Гиперсфера.

Объем (границы) = 2π²R³.

Гиперобъем (заключенный внутри границы) = ⅓π²R⁴.

Если радиусы цилиндра двойного вращения равны радиусу гиперсферы, то его можно описать вокруг этой гиперсферы. При этом объем цилиндра двойного вращения будет равен удвоенному объему гиперсферы, а гиперобъем — удвоенному объему гиперсферы.

Грэхэм Д. Фитч