23 СЛУЧАЙНЫЙ ТВОРОГ: КОНТАКТНЫЕ КЛАСТЕРЫ И ФРАКТАЛЬНАЯ ПЕРКОЛЯЦИЯ
В этой группе глав мы поговорим о том, как с помощью различных, порой до смешного простых, приемов можно получить весьма эффективные случайные фракталы. Предметом главы 23 является рандомизация створаживания – процедура, используемая для приблизительного построения канторовой модели шума (см. главу 8), модели распределения галактик на основе пространственной канторовой пыли (см. главу 9), модели турбулентной перемежаемости (см. главу 10) и т.п. Глава 24 посвящена в основном представлению моих сквиг-кривых – нового рандомизированного варианта кривой Коха. В главе 25 мы коснемся броуновского движения, а в главе 26 определим другие фракталы со «случайным срединным смещением»
Вынесенный в заголовок этой группы глав термин «стратифицированный» (иначе – расслоенный, от латинского strata «слой») означает, что во всех рассматриваемых прецедентах мы будем иметь дело с фракталами, построенными посредством наложения друг на друга слоев, причем каждый из последующих слоев дает более мелкие по сравнению с предыдущим детали. Во многих случаях слои располагаются в иерархической последовательности. Вообще говоря, до сих пор мы изучали исключительно стратифицированные фракталы, пусть никто об этом прямо и не говорил. Однако в последующих главах мы убедимся в том, что случайные фракталы отнюдь не обязаны быть стратифицированными.
Фракталы в данной главе строятся на сетке или решетке, составленной из интервалов, квадратов или кубов, каждый из которых делится на bE подынтервалов, подквадратов или подкубов (b - решеточная база).
РАНДОМИЗИРОВАННАЯ ЛИНЕЙНАЯ ПЫЛЬ
Построение простейшей случайной пыли, способной усовершенствовать канторову модель ошибок при передаче (см. главу 8), начинается с простейшей формы канторова створаживания: с решетки интервалов с базой b и некоторого целого числа N. Однако вместо одного конкретного генератора нам предлагается список всех возможных канторовых генераторов, т.е. всех различных рядов, состоящих из Nзаполненных и b−Nпустых промежутков. На каждом этапе построения случайным образом и с одинаковой вероятностью выбирается один из этих генераторов.
Любая принадлежащая творогу точка P определяется последовательностью вложенных «предтворожных» интервалов с длинами Rk=b−k. Если общая исходная масса рана 1, то каждый предтворог содержит одинаковую массу RkD. Масса, содержащаяся в интервале длины 2Rk с центром в точке P, равна произведению RkD на некоторую случайную величину, лежащую в интервале от 1 до 2 и не зависящую от k.
Заметим, что размерность D ограничена последовательностью ln(b−1)/lnb, ln(b−2)/lnb,.... Это ограничение часто причиняет неудобства. Что более важно, вышеприведенное определение створаживания сложно реализуется в компьютерной программе и вообще плохо поддается аналитическим манипуляциям. Так как главное достоинство модели створаживания заключается в ее простоте, более предпочтительным, очевидно, окажется альтернативное определение, которое мы дадим в последующих разделах. Во избежание путаницы будем называть определение, приведенное в этом разделе, ограниченным (в [378] я предлагал иной термин: микроканоническое определение).
СТВОРОЖЕННАЯ СЛУЧАЙНАЯ ЛИНЕЙНАЯ ПЫЛЬ
Более удобное определение створаживания (предложенное в [378], где я называю его каноническим) можно получить с помощью последовательности случайных двоичных выборов, каждый из которых определяется простым броском монеты. Бросок монеты на первом этапе решает последующую судьбу каждого из bподынтервалов. Если выпадает орел (событие с вероятностью p<1), то данный подынтервал «выживает» как часть предтворога; в противном случае мы с ним больше не встретимся. Изолированные точки, остающиеся между «мертвыми» подынтервалами любой длины, после каждого этапа стираются. Здесь, конечно, от них вреда немного, однако их плоскостные или пространственные аналоги (изолированные линии и т.д.) порождают в множестве ложную связность. Ожидаемое количество выживших подынтервалов равно
Формализм процесса рождения. Если назвать подынтервалы «детьми», а весь каскад – «семьей», то сразу станет ясно, что распределение количества детей определяется известным процессом рождения и гибели (см. [196]).
Фундаментальным следствием этого наблюдения является существование для величины
Значение
Смысл размерности подобия. Так как отношение lnN(m)/ln(1/r) здесь изменяется случайным образом, понятие размерности подобия требует переосмысления. Из почти истинного соотношения
можно предположить, что обобщенная размерность подобия выглядит следующим образом:
D*=ln
При таком определении D* условие существования непустого предельного множества
ВЛОЖЕННЫЕ ТВОРОГИ С УМЕНЬШАЮЩЕЙСЯ РАЗМЕРНОСТЬЮD
Построим последовательность случайных творогов с уменьшающейся размерностью D, каждый из которых вложен в предыдущий.
Предварительный этап не зависит от величины D и заключается в присвоении каждому вихрю (неважно какого порядка) некоторого случайного числа U из интервала от 0 до 1. Из главы 21 нам известно, что все эти числа, взятые в совокупности, эквивалентны одному – единственному числу, которое служит мерой вклада случайности в данный процесс. Далее выбираем значение D и определяем из последней записанной нами формулы порог вероятности p. Наконец, происходит собственно створаживание посредством, если можно так выразиться процесса «фрактальной децимации». При U>p вихрь «умирает», переходя в простоквашу и унося с собой все свои субвихри. Если же U≤p, то вихрь можно считать выжившим и готовым к дальнейшему створаживанию.
Этот метод позволяет представлять все характеристики творога, простокваши и всех остальных интересующих нас множеств в виде функций от непрерывно изменяющейся размерности. Достаточно зафиксировать случайные числа U, уменьшая при этом значение p от 1 до 0, и мы получим размерность D, уменьшающуюся от 3 до 0.
Пусть даны твороги Q1 и Q2, соответствующие вероятностям p1 и P2
1 и имеющие размерности D1 и D2
СТВОРАЖИВАНИЕ ГАЛАКТИК ПО ХОЙЛУ
У ограниченного створаживания имеется пространственный аналог, который можно использовать при геометрической реализации творожной модели распределения галактик, предложенный Хойлом (см. рис. 310 и 311).
Рис. 310 и 311. Реализация модели Хойла (размерность D=1) с использованием случайного створаживания на решетке
Основой модели Хойла (см. главу 9) является газовое облако очень низкой плотности, которое в результате последовательных сжатий образует скопление галактик, затем собственно галактики и т.д. Однако описание Хойла страдает чрезвычайной схематичностью, поэтому реальное геометрическое воплощение его модели требует некоторых специальных допущений. На рисунках показаны проекции простейшего такого воплощения на плоскость.
Рис. 311. В качестве инициатора выступает куб со стороной 1, который на первом этапе каскада разделяется на 53=125 подкубов со стороной 5−1; далее процедура повторяется, и на k - м этапе мы получаем уже 125k подкубов k - го порядка, длина стороны каждого из которых равна 5−k, и при этом содержащееся в любом из подкубов (k−1) - го порядка вещество, сжимаясь, образует набор из 5 подкубов k - го порядка, который мы будем называть k - предтворогом. Створаживание по Хойлу всегда понижает размерность D с 3 до 1.
На этом рисунке вы можете видеть первые три этапа каскада, совмещенные друг с другом, причем более темный оттенок серого символизирует бóльшую плотность газа. В сравнении с рисунком, приведенным в [230] (с. 286), наша картинка может показаться приближенной. Это не так: рисунок выполнен с очень тщательным соблюдением масштаба, поскольку вопросы, связанные с размерностью, требуют точности.
Ввиду того, что мы представляем здесь плоскую проекцию трехмерного творога, нередко случается так, что два куба проецируются в один квадрат. Однако в пределе совпадения проекций двух точек практически исключены. Образующаяся пыль настолько разрежена, что пространство, в сущности, остается прозрачным.
Рис. 310. Здесь показан только четвертый этап каскада (с другой затравкой). Лежащая в основе построения решетка практически не прослеживается, и это хорошо, поскольку в природе мы никаких решеток не наблюдаем (см. главу 27). Верхний участок вихря, обрезанный краем страницы, в настоящем примере пуст.
Регулирование лакунарности. Понятие лакунарности, представленное в главе 34, непосредственно применимо к створаживанию на прямой и к створаживанию по Хойлу. Если у Хойла заменить N=5 «реальным» значением Фурнье N=1022 (см. рис. 141), то лакунарность случайного творога становится очень и очень малой.
СТВОРАЖИВАНИЕ В МОДЕЛИ ТУРБУЛЕНТНОГО РАССЕЯНИЯ НОВИКОВА – СТЮАРТА
Пространственное случайное створаживание можно наблюдать и в одной очень ранней модели перемежаемости турбулентности. Новиков и Стюарт [451] предполагают, что пространственное распределение рассеяния генерируется каскадным процессом: в начале каждого этапа берется предтворог предыдущего этапа и створаживается дальше, давая в результате N меньших в r раз частей. См. рис. 312 – 315.
Эта модель очень приблизительна, она даже грубее модели, предложенной в [21] для описания определенных избыточных шумов (см. главы 8 и 31). Она почти не привлекла к себе сколько-нибудь благосклонного внимания, ее никто не исследовал и не разрабатывал. Однако такое пренебрежительное отношение лишено всяких оснований. Мои исследования показывают, что в створаживании, согласно этой модели, уже присутствовали многие черты, характерные для более совершенных и более сложных современных моделей.
Рис. 312 – 315. Случайный творог Новикова – Стюарта на плоской решетке (размерности от D=1,5936 до D=1,9973) и перколяция
Каскад Новикова – Стюарта дает полезное общее представление о том, каким образом турбулентное рассеяние в жидкости приходит в итоге к относительно малому объему. Концептуально он очень похож на каскад Хойла, проиллюстрированный на предыдущих рисунках; Однако между фрактальными размерностями D получаемых в пределе этих каскадов множеств имеется значительное различие. Размерность распределения галактик близка к единице, тогда как в турбулентности D>2, причем хорошим приближением считается значение в интервале от 2,5 до 2,6. Для более общего понимания процесса створаживания на рисунках представлены примеры с различными размерностями. Во всех примерах r=1/5, а N принимает следующие значения:
N=5×24, N=5×22, N=5×19, N=5×16 и N=5×13.
Размерности же, соответственно, равны:
D=1+ln24/ln5=2,9973; D=2,9426, D=2,8505, D=2,7227 и D=2,5936.
Сыворотка изображается серым цветом, а творог черным или белым. Белая область представляет собой перколяционный контактный кластер, т.е. вы можете, двигаясь только по белому, пройти от нижнего края рисунка до верхнего. Черным цветом представлены все остальные контактные кластеры.
Так как размерность турбулентности больше 2, твороги эти, в сущности, непрозрачны, а на рисунках показаны (в отличие от творогов Хойла) их плоские сечения со следующими размерностями:
D=1,9973, D=1,9426, D=1,8505, D=1,7227 и D=1,5936.
Правый нижний угол рис. 312 отведен под пример с размерностью D~1,9973, не представляющий большого интереса, остальная часть рисунка иллюстрирует случай D~1,9426.
Порождающая программа и затравка одинаковы для всех примеров, и мы можем проследить постепенное исчезновение серых пятен по мере увеличения размерности. Для начала возьмем 25 субвихрей любого вихря и наложим их случайным образом друг на друга. Серыми окажутся 25−N верхних субвихрей, где N=5D.
В двух примерах с наименьшими размерностями перколяции не происходит. При N=19 на рисунке остается несколько черных пятен и появляется много белых. Некоторые затравки перколируют уже при N=18. Однако на иллюстрациях показан слишком ранний этап каскада, чтобы можно было делать достоверные оценки порога Dкрит.
Сыр. Образ, стоящий за термином створаживание (равно как и за термином сыворотка, обозначающим дополнение творожного множества), не следует, разумеется, воспринимать буквально, однако известно, что образование реального сыра может быть вызвано биохимической нестабильностью – точно так же, как створаживание Новикова – Стюарта происходит, согласно предположению, вследствие нестабильности гидродинамической. Как бы то ни было, неопровержимых данных в пользу того, что какой-нибудь съедобный сыр может оказаться, ко всему прочему, еще и фрактальным, у меня нет.
СЛЕДСТВИЯ «ПРОМЕЖУТОЧНОСТИ» СЛУЧАЙНОГО ТВОРОГА
Известно, что в трехмерном пространстве стандартные фигуры с размерностью D<3 (точки, линии и поверхности) имеют нулевой объем. Это верно и для случайного творога.
Площадь предтворогов также ведет себя довольно просто. При D>2 она стремится к бесконечности, а при D<2 - к нулю. При D=2 створаживание практически не изменяет величину площади.
Аналогичным образом, по мере того, как m→∞, суммарная длина краев предтворогов стремится к бесконечности при D>1 и к нулю при D<1.
Эти свойства можно считать еще одним подтверждением того, что творог с фрактальной размерностью, заключенной в интервале 2
Доказательства. Самым простым оказывается доказательство для случая ограниченного створаживания. Объем m - го предтворога равен L3r3mNm=L3(r3−D)m, и величина эта стремится к нулю по мере уменьшения внутреннего масштаба η=rm. Что касается площади, то случай D<2 устанавливается по верхнему пределу. Площадь предтворога m - го порядка не может превышать суммы площадей соответствующих вихрей, так как упомянутая сумма включает в себя те стороны субвихрей, которые, являясь общими для соседних творогов, нейтрализуют одна другую. Поскольку площадь каждого вихря m - го порядка составляет 6L2r2m, их общая площадь не может превышать 6L2r2mNm=6L(r2−D)m. При D<2 верхний предел стремится к нулю по мере того, как m→∞, что доказывает наше утверждение. В случае D>2 мы можем получить нижний предел, отметив, что объединение вихрей m - го порядка, содержащихся в предтвороге m - го порядка, включает в себя, по крайней мере, один квадрат с длиной стороны rm и площадью r2m, каковой квадрат достается нам в наследство от предтворога (m−1) - го порядка и никак не может быть меньше, чем L2r2mNm−1=(L2/N)(r2−D)m, а эта величина стремится к бесконечности вместе с m. Наконец, при D=2 оба предела оказываются конечными и положительными.
РАЗМЕРНОСТЬDФРАКТАЛЬНЫХ СЕЧЕНИЙ: ПРАВИЛО СЛОЖЕНИЯ КОРАЗМЕРНОСТЕЙ
Наша следующая тема уже неоднократно упоминалась ранее. И вот теперь мы созрели для того, чтобы рассмотреть ее в полном и явном виде на примере одного особого случая.
Для начала припомним следующее стандартное свойство евклидовой геометрии плоскости: если размерность D некоторой фигуры удовлетворяет условию D≥1, то сечение этой фигуры прямой (если оно не пусто) «обычно» имеет размерность D−1. Например, непустое линейное сечение квадрата (D=2) представляет собой отрезок с размерностью 1=2−1. А линейное сечение прямой (D=1) - это точка (размерность 0=1−1), за исключением случая, когда обе прямые совпадают.
Стандартные геометрические правила, определяющие поведение размерности при пересечении, можно свести к следующему, более общему виду: если сумма коразмерностей C=E−D меньше E, то эта сумма является коразмерностью типичного пересечения; в противном случае пересечение, как правило, оказывается пустым. (Я приглашаю читателя самостоятельно проверить справедливость данного утверждения для различных пространственных конфигураций плоскостей и прямых.)
Упомянутое правило, к счастью, распространяется и на фрактальные размерности. Благодаря этому обстоятельству многие относящиеся к фракталам рассуждения становятся гораздо более простыми, чем можно было опасаться. Не следует, однако, забывать и о многочисленных исключениях из правила. Так, в частности, в главе 14 мы наблюдали, что при пересечении неслучайного фрактала J особым образом расположенной прямой или плоскостью далеко не всегда можно вывести размерность получающегося сечения из размерности фрактала J. Случайные фракталы в этом смысле заметно проще.
РАЗМЕРНОСТЬDСЕЧЕНИЙ СЛУЧАЙНЫХ ТВОРОГОВ
Для доказательства применимости этого фундаментального правила к фрактальному творогу рассмотрим следы (квадраты и интервалы), оставляемые вихрями и субвихрями каскада створаживания на поверхности либо на краю исходного вихря со стороной L. На каждом этапе каскада каждый участок предтворога замещается некоторым количеством меньших участков, причем количество это определяется процессом рождения и гибели. Обозначим количество «отпрысков» m - го поколения, расположенных вдоль края исходного вихря, через N1(m). Классические выводы, уже использованные ранее в этой главе, показывают, что величина N1(m) не оставляет нам богатого выбора. Если
.
К двумерным следам вихрей применимы те же рассуждения, только нужно заменить величину N1 на некоторую случайную величину N2 - такую, что
.
При ограниченном створаживании результаты остаются такими же.
Тождественность поведения фрактальной и евклидовой размерности при пересечении подтверждается и следующим наблюдением: при пересечении нескольких створоженных фракталов, носителем которых является одна и та же решетка, а размерности равны, соответственно, Dm, выполняется равенство E−D=∑(E−Dm).
ТОПОЛОГИЯ ТВОРОГА: КЛАСТЕРЫ
Рискуя показаться занудным, все же позволю себе повториться: фундаментальные неравенства - D<2 для галактик (глава 9) и D>2 для турбулентности (глава 10) – являются не топологическими, но фрактальными.
При неслучайном створаживании в E≥2 (см. главы 13 и 14) топология предельного множества однозначно определяется выбранным в начале процесса генератором. Любой ковер Серпинского (D
Случайное же створаживание использует статистически смешанный генератор; о топологии предельного множества в этом случае можно говорить лишь «почти наверное» (см. конец главы 21). Сама неточность такого створаживания делает его настолько простым, что существенным становится тщательно исследовать имеющиеся в нем на этот счет предсказания. Наше теперешнее знание складывается из доказанных фактов и выведенных из косвенных свидетельств умозаключений.
Критические размерности. Топологическая размерность DT творога дискретно изменяется, когда значение D пересекает определенные критические пороги, которые мы будем обозначать как Dкрит,D2крит,...,D(E−1)крит. Иными словами, почти невозможно встретить смешанный творог, т.е. такой, который состоял бы из отдельных частей с различной размерностью DT.
Порог Dкрит - самый важный. Он, кроме того, является верхним пределом для тех значений D, при которых данный творог почти наверняка представляет собой пыль, а также нижним пределом для тех значений D, при которых данный творог почти наверняка распадается на бесконечное количество непересекающихся участков, каждый из которых представляет собой связное множество. По причинам, изложенным в главе 13, эти участки называются контактными кластерами.
Следующий порог, D2крит, отделяет значения D, при которых творог представляет собой σ - кривую, от тех, при которых он становится σ - поверхностью, и т.д. Если (или когда) мы всерьез займемся исследованием топологии сыворотки, она, вполне возможно, одарит нас новыми критическими порогами.
Размерность кластеров. Когда D>Dкрит, фрактальная размерность контактных кластеров Dc
Распределение размеров кластеров. Распределение Pr(Λ>λ),Pr(A>a) и т.д. можно получить путем простой замены Nr на Pr с соответствующих формулах главы 13.
Пределы дляDкритиD2крит. Очевидно, что Dкрит≥1 и D2крит≥2. В следующем разделе доказывается, что для порога Dкрит существует верхний предел, меньший E, из чего можно заключить, что вышеприведенные определения и в самом деле имеют вполне конкретный смысл.
Кроме того, существуют и более связанные нижние пределы, не зависящие от b. Чуть позже я покажу, что достаточным условием для DT=0 является D<½(E+1). Следовательно, Dкрит>½(E+1)>1. Достаточным же условием для равенства DT либо 0, либо 1, является D<½E+1. Следовательно, D2крит>½E+1>2.
При E=3 находим D<½(E+1)=2, что вполне согласуется (даже с запасом) как со значением Фурнье – Хойла D=1, так и с эмпирическим значением для галактики, D~1,24. Таким образом, случайный творог с любым из этих значений D представляет собой пыль – чего мы, собственно, от него и добивались.
Условие D<½E+1 дает при E=3 размерность D<2,5. Это пороговое значение (как ни странно) также хорошо вписывается в нашу картину и вполне соответствует оценке размерности носителя турбулентной перемежаемости. Опыт подсказывает, что достаточные условия, полученные с помощью приближенных методов, редко бывают оптимальными. Следовательно, можно предположить, что, согласно модели створаживания, носитель турбулентности должен представлять собой нечто меньшее, чем участок поверхности.
Отыскание нижних пределов. Существование нижних пределов обусловлено тем фактом (см. главу 13), что контактные кластеры в твороге возникают там, где сливается содержимое соседних ячеек. Рассмотрим в этой связи пересечение творога с плоскостью, перпендикулярной некоторой оси с координатой вида ab−β, где α и β - целые числа. Известно, что при D>1 существует положительная вероятность того, что это пересечение непусто. Однако для слияния необходимо перекрытие между частичными вкладами в пересечение соседних ячеек с общей стороной, длина которой равна b−β. Если эти вклады непусты, то они статистически независимы друг от друга; следовательно, размерность их перекрытия формально определяется выражением D*=E−1−2(E−D)=2D−E−1.
Если D*<0 (т.е. если D<½(E+1)), то вклады не перекрываются. Следовательно, данный творог никак не может содержать в себе непрерывную кривую, пересекающую нашу плоскость, и DT<1.
Если D*<1 (т.е. если D<½E+1), то перекрытие вкладов (при условии, что оно существует) не может содержать кривую. Следовательно, творог не может содержать в себе непрерывную поверхность, пересекающую плоскость, и DT<2.
При D*
С учетом этих результатов не составляет большого труда завершить доказательство приведенных в предыдущем подразделе неравенств: если творог содержит в себе кривую (или поверхность), то любая точка P на этой кривой (поверхности) содержится внутри блока со стороной вида b−β, который кривая (поверхность) пересекает в некоторой точке (или кривой). Можно утверждать, что таких точек (или кривых) почти наверняка не существует при D<½(E+1) (или при D<½E+1).
ПЕРКОЛЯЦИОННЫЕ ФРАКТАЛЬНЫЕ КЛАСТЕРЫ
Обсуждение топологии лучше всего продолжать в рамках перколяционной терминологии. В соответствии с определением, приведенным в главе 13, мы говорим, что некая фигура внутри квадрата или куба перколирует, если она содержит в себе связную кривую, соединяющие противоположные стороны этого квадрата или куба. Под термином «перколяция» обычно понимают бернуллиеву перколяцию, которую мы рассматривали в главах 13 и 14. Однако аналогичная задача возникает и в контексте случайных фракталов. Ниже мы попытаемся решить эту задачу на примере случайного творога.
Опираться мы будем на фундаментальный факт, заключающийся в том, что если упомянутая фигура представляет собой σ - кластер, то она перколирует в том и только в том случае, если перколирует один из принадлежащих ей контактных кластеров. Когда контактные кластеры фрактальны и их длины подчиняются безмасштабному гиперболическому распределению, вероятность перколяции не зависит от длины стороны квадрата и не вырождается в 0 или 1. В бернуллиевой перколяции упомянутое в предыдущем предложении «когда» сводится к весьма жесткому условию: p=pкрит. Перколяция сквозь фрактальный творог довольствуется условием более мягким, а именно: D>Dкрит. Разница очень значительна. И все же понимание бернуллиевой перколяции помогает понять перколяцию творога, и наоборот.
Верхний предел дляDкрит. Я утверждаю, что при b≥3 пороговое значение Dкрит удовлетворяет неравенству bDкрит>bE+½bE−1. Точнее, при фиксированном N (ограниченное створаживание) выполнение этого условия почти гарантирует перколяцию. При неограниченном створаживании оно означает, что существует некая положительная, но малая вероятность того, что перколяция не произойдет.
Прежде всего рассмотрим случай неслучайного N. При сильном условии bE−N≥ ≥½bE−1−1 любая заданная поверхность, заключенная между двумя ячейками предтворога, всегда выживает. Даже в самой опасной ситуации, когда вокруг упомянутой поверхности скапливаются все не выживающие субвихри, их количества совершенно недостаточно для разрыва существующей тропы (причем не почти наверное, а абсолютно точно). Более слабое условие bE−N≥½bE−1 дает тот же результат, но уже на абсолютно, а лишь почти наверное. Получающийся творог состоит из листов поверхности, окружающих отдельные лакуны, заполненные сывороткой. Две точки сыворотки, расположенные в разных лакунах, нельзя соединить никаким образом. Топология такого творога почти наверняка тождественна топологии ковра Серпинского или фрактальной пены (см. главу 14).
Если применить то же условие к неограниченному створаживанию, то отсутствие перколяции из разряда совершенно невозможных событий перейдет в просто маловероятные.
Рассмотрим некоторые численные примеры на плоскости (E=2). При b=3 более слабое (и более полезное) из вышеприведенных условий дает неравенство N>7,5, которое имеет единственное решение: N=8 (равное значению N для ковра Серпинского). По мере того как b→∞ верхний предел для Dкрит подходит все ближе к 2.
Нижний предел дляDкрит. При b≫1 справедливо неравенство Dкритz>E+logbpкрит, где pкрит - критическая вероятность в бернуллиевой перколяции. Существование этого предела обусловлено тем, что первый этап случайного фрактального створаживания сводится к построению бернуллиевой решетки, каждая ячейка которой является проводящей с вероятностью bD−E. Если эта вероятность меньше pкрит, то электропроводность решетки – событие маловероятное. А если такая решетка все-таки проводит ток, то происходит это, скорее всего, благодаря одной-единственной цепочке проводящих ячеек. На втором этапе случайного фрактального створаживания мы строим бернуллиеву решетку с вероятностью bD−E уже в каждой проводящей ячейке решетки первого этапа. И это наверняка разорвет существующую перколяционную цепочку.
При b→∞ новый предел стремится к E и, в своей области применения (b≫1), превосходит предел ½(E+1). Таким образом, Dкрит→E.
исывается в обязательном порядке.
Общие вершины, рассматриваемые первыми, порождают «случайные цепи», которые представляют собой прямое обобщение некоторых кривых Коха или Пеано.
Что касается общих сторон, то от них берет начало гораздо более интересное и привлекательное семейство фракталов, представленное впервые в [393] и [394]. Одни представители этого семейства – «простые» кривые, неветвящиеся и не содержащие самопересечений, другие имеют вид петель и деревьев; кроме того, процесс может порождать и поверхности. Я предлагаю называть такие фигуры сквиг - кривыми и сквиг - поверхностями.
Я отдаю сквиг - кривым предпочтение перед случайными цепями главным образом потому, что их меньшее непостоянство, по всей видимости, отражает некое фундаментальное свойство пространства.
Линейные сквиг – кривые можно считать приближенными моделями линейных полимеров и речных русел, петлеобразными сквиг – кривыми моделируются береговые линии, а древовидными – речные бассейны.
СЛУЧАЙНЫЕ ЦЕПИ И ЦЕПНЫЕ КРИВЫЕ
Совокупность белых областей на рис. 71 можно рассматривать как цепь, составленную из треугольников, соединенных вершинами. Следующий этап построения заменяет каждый треугольник подцепочкой, целиком заключенной внутри него, и дает в результате цепь, составленную из меньших треугольников, снова соединенных вершинами. Такая последовательность вложенных друг в друга цепей сходится в пределе к кривой Коха. (Процедура напоминает построение цепей Пуанкаре в главе 18.)
Подобным образом можно поострить и многие другие кривые Коха – например, салфетку Серпинского (рис. 205); цепью в этом случае послужит фигура, остающаяся после удаления центральных треугольных трем.
Этот метод построения прекрасно рандомизируется – например, можно заменить треугольник двумя треугольниками с коэффициентом r=1/√3, как на рис. 71, либо тремя треугольниками с r=1/3.
ПРОСТЕЙШИЕ СКВИГ – КРИВЫЕ [393]
Простейшей сквиг – кривой является случайная фрактальная кривая, построенная в [393, 394] и более подробно изученная в [473, 474, 475]. Эта модель русла реки, созданная по образу и подобию известных картинок из учебников по географии и геологии, на которых изображены последовательные этапы развития реки, промывающей себе путь через долину; с каждым этапом будущее русло приобретает все более четкие очертания.
Перед началом k- го этапа река течет в «предсквиг – долине», составленной из ячеек правильной треугольной решетки со стороной 2−k. Разумеется, ни в одну ячейку нельзя наведываться более чем однажды, к тому же каждое звено в решетке должно касаться сторонами двух соседних звеньев, оставляя третью сторону «свободной».
На k- м этапе эта предсквиг – кривая заменяется другой, более точной, построенной на интерполированной решетке со стороной 2−k−1. Очевидно, что предсквиг – кривая (k+1)- го порядка обязательно содержит половину каждой стороны, общей для двух соседних звеньев k- го порядка. Верно также строгое обратное утверждение, а именно: положение общих (несвободных) половин сторон однозначно определяет вид предсквиг – кривой k- го порядка.
Симметрично – случайные сквиг – кривые. Будем выбирать половину стороны, которую следует оставить свободной, случайным образом, полагая, что каждый из вариантов равновероятен. Тогда число звеньев (k+1)- го порядка внутри звена k- го порядка равно 1 с вероятностью 1/4 или 3 с вероятностью 3/4. Среднее значение составит 2,5.
С каждым этапом долина сужается и в пределе асимптотически сходится в некую фрактальную кривую. Я, естественно, предположил, что размерность этой предельной кривой равна D=ln2,5/ln2=1,3219. Доказательство (весьма деликатное, надо сказать) можно найти в [473].
Асимметрично – случайные сквиг – кривые. Предположим, что вероятность того, что после разделения стороны треугольника на две половины поддолина выберет, скажем, «левую», не равна 1/2. Понятия «правый» и «левый» можно определять либо с позиции наблюдателя, смотрящего в направлении вниз по реке, либо с позиции наблюдателя, находящегося в центре разделяемого треугольника. В первом случае D=ln[3−p2−(1−p2)]/ln2 и может принимать значения от 1 до ln2,5/ln2. Во втором случае D=ln[3−2p(1−p)]/ln2 и может принимать значения от ln2,5/ln2 до ln3/ln2. В общей сложности допустимы все значения D от 1 до ln3/ln2.
АЛЬТЕРНАТИВНЫЕ РЕШЕТКИ И СКВИГ – КРИВЫЕ
Используя другие интерполированные решетки, можно получить сквиг – кривые иного вида. Во всех случаях, когда для идентификации предсквиг – кривой (k+1) - го порядка достаточно знать, в каких интервалах она пересекает границу между двумя ячейками k - го порядка возможно непосредственное обобщение. В качестве примера можно привести прямоугольную решетку, в которой отношение длинной стороны ячейки к короткой имеет вид √b, и каждая ячейка интерполируется в b ячеек, расположенных поперек исходной ячейки.
Иначе обстоит дело с треугольными решетками, ячейки которых интерполируются в b2≥9 треугольников, или с квадратными решетками, где ячейки интерполируются в b2≥4 квадратов. В обоих случаях интерполяция предсквиг – кривых требует дополнительных шагов.
При b=3 (треугольная решетка) или b=2 (квадратная решетка) достаточно одного дополнительного шага – вполне, впрочем, естественного. В самом деле, представьте себе четыре «луча», исходящего из центра квадрата и разделяющих его на четыре части (либо шесть лучей, разделяющих треугольник на девять частей). Как только мы оставляем свободным один из этих лучей, поддолина оказывается полностью определена. Согласно моему описанию сквиг – кривых, луч, который следует оставить свободным, выбирается случайным образом, причем каждый из вариантов равновероятен. Размерности при этом принимают следующие значения: D~1,3347 (для треугольников, разделенных на девять частей) и D~1,2886 (для квадратов, разделенных на четыре части). Учитывая, что для простейших сквиг – кривых D~1,3219, можно заключить, что все сквиг – кривые характеризуются приблизительно одинаковой размерностью D, значение которой находится в окрестности 4/3.
В тех случаях, когда ячейка разделяется на b2 частей, где b>3 (для треугольников) или b>2 (для квадратов), для определения поддолины необходимо вводить различные дополнительные факторы, отчего конструкция приобретает все более произвольный характер. При этом сущность сквиг – построения, понимаемая в свете рассуждений последующего раздела, оказывается потерянной.
ЦЕПНЫЕ КРИВЫЕ И СКВИГ – КРИВЫЕ: СРАВНЕНИЕ
Остановимся на минуту и припомним, что независимо от того, получаем ли мы фрактальную кривую цепным методом Чезаро или с помощью оригинального метода Коха, погрешность, возникающая при остановке процесса, распределяется вдоль кривой очень неоднородно. Полезным здесь может оказаться тот факт, что некоторые точки уже после конечного числа этапов подходят к своему предельному положению бесконечно близко. Это обстоятельство, к примеру, помогло Коху в отыскании простейшей кривой, не имеющей касательных ни в одной своей точке. Однако сущность понятия кривой становится гораздо яснее, если рассматривать кривую как предел полосы однородной ширины. Мои сквиг – кривые вполне отвечают этому условию.
Следующий пункт сравнения связан с числом произвольных решений, которые приходится принимать «создателю» при том и другом подходе. Подход Коха к построению неслучайных или случайных фракталов необычайно эффективен (он, в частности, позволяет достичь любой желаемой размерности в рамках относительно простой кривой), однако он требует от создателя принятия многочисленных специфических решений, причем все они, так или иначе, зависят друг от друга. Значение b здесь также не является внутренней характеристикой.
Все мы знаем, что наука немало настрадалась от недостатка в евклидовой геометрии моделей для описания негладких природных форм, а потому известие о том, что фрактальная геометрия способна справиться с этим, несомненно, бедственным положением, должно, казалось бы, наполнить наши сердца восторгом. Боюсь, однако, что на настоящей стадии развития теории восторги придется несколько попридержать и постараться обойтись как можно меньшим числом произвольных решений.
В этом свете факт наличия весьма серьезных ограничений, налагаемых геометрией плоскости на построение сквиг – кривых (в результате чего сквиг - кривые получаются более предсказуемыми и менее разнообразными), выглядит достоинством.
РАЗМЕРНОСТЬD~4,3
Следует обратить самое пристальное внимание на размерность сквиг – кривых D~4,3. То, что мы еще не раз встретимся с этим значением – в главе 25 (рис. 341) и в главе 36 – вряд ли можно объяснить простым совпадением; не исключено, что он приведет нас к более глубокому проникновению в основы геометрической структуры плоскости.
ВЕТВЯЩИЕСЯ СКВИГ - КРИВЫЕ
Вернемся к построению речного русла. Вот мы заменили треугольный интервал долины участком поддолины, состоящим из одного или трех подтреугольников; представьте теперь, что оставшиеся три (или один) подтреугольника вдруг решают отвести от основного русла собственную поддолину. Построение нового русла полностью определяется уже известным процессом. Точки, в которых подреки пересекают границы между треугольниками, выбираются с помощью той же системы, что используется в главной реке. В пределе конструкция сходится к древовидной кривой, которая заполняет треугольник случайным образом, как можно видеть на рисунке:
ОЧЕНЬ КРАТКО ЕЩЕ О ДВУХ ПРЕЦЕДЕНТАХ
Тот факт, что столь грубая модель, как мои линейные сквиг – кривые, может дать результат, вполне сносно – хоть и приблизительно – согласующийся с наблюдаемой размерностью реальных речных русел и бассейнов, представляется мне весьма интересным и даже многозначительным.
С помощью этих кривых можно также найти размерность общепринятой модели для сильно разбавленных растворов линейных полимеров – случайного блуждания без самопересечений (СББС) на решетке (см. главу 36).
Лучшая (чем в случае СББС) приспособленность сквиг – кривых к ограничениям, налагаемым геометрией плоскости, объясняется, очевидно, интерполяционным характером их построения.
СКВИГ–ПОВЕРХНОСТИ
Сквиг – поверхности строятся на кубе, разделенном на b3 подкубов; я определил соответствующие «освобождающие» процедуры, которые однозначно определяют получаемую в результате фигуру – нечто вроде скомканного шерстяного шарфа постоянной и в то же время уменьшающейся толщины. К сожалению, не представляется возможным привести здесь алгоритм построения, из-за его чрезмерной громоздкости.
Во многих случаях кривую Коха с заранее заданной размерностью D и без самопересечений можно получить несколькими различными способами, используя при этом одну и ту же общую решетку и одинаковые инициаторы. Кроме того, предположим, что существуют, по крайней мере, два генератора, которые дают одинаковый общий контур фигуры. Теперь можно легко рандомизировать построение, случайным образом выбирая на каждом этапе один из двух упомянутых генераторов. Генераторы могут, например, выглядеть вот так:
Рис. 322. Случайное побережье Коха (размерность D=1,6131)
Общая форма случайного острова Коха, построенного таким способом, сильно зависит от исходной фигуры. В частности, все начальные симметрии явственно прослеживаются на любом из этапов построения. По этой причине (равно как и по другим, описанным в главе 24) метод построения случайной кривой Коха путем случайной перетасовки ее элементов имеет весьма ограниченную область применения.
Рис. 323. Случайная кривая Пеано (размерность D=2)
Изображенный ниже генератор вкупе с инициатором [0,1] дает в пределе кривую, заполняющую треугольник.
Положение и вид генератора определяется четностью номера интервала в терагоне. На интервалах с нечетными номерами вышеприведенный (т.е. прямой, S) вариант генератора располагается справа от кривой. К интервалам же с четными номерами применяется обратный (F) вариант генератора, и располагается он слева от кривой. Суть метода рандомизации, результат которой показан на рисунке; состоит в том, что выбор этих фокальных точек производится случайным образом. В данном примере распределение симметрично относительно средней точки интервала. Каждый подтреугольник разбивается позднее на четыре подтреугольника, причем независимым от соседей образом, и процесс продолжается до бесконечности.
Для того чтобы за изменениями терагона было легче проследить, каждый интервал заменен двумя, причем добавочная концевая точка является серединой «крыши» этого интервала.
Рис. 324. Треугольник и сквиг — кривая
Здесь проиллюстрировано поэтапное построение простейшей сквиг – кривой – каждый последующий этап совмещен с предыдущим и показан более темным оттенком серого цвета. Обратите также внимание на следующее обстоятельство: то, что мы не видим светлого оттенка под темным, не означает, что светлая область в этом месте прерывается. Начинается построение светло-серым треугольником, а заканчивается кривой черного цвета. Масштаб изображения этапов с 6 по 10 несколько больше масштаба для этапов с 0 по 5. Сами этапы описаны в тексте главы.
Рис. 325. Шестиквиговая береговая линия
На этом рисунке изображены шесть сквиг – кривых, соединенных концами и образующих петлю без самопересечений. Размерность фигуры очень близка к D=4/3. Это же значение фигурирует и во многих других примерах кривых без самопересечений – например, границы броуновской оболочки на рис. 341, сходство которой с нашим «шестисквигом», безусловно, заслуживает упоминания.