D.
Поскольку факты установлены, невредно было бы поразмышлять об их возможных причинах. Мы полагаем, что разлом можно рассматривать как некую нетипичную форму перколяции. Известно, что, по мере того, как образец растягивается в разные стороны, полости, которые неизбежно присутствуют в образце вокруг посторонних включений, увеличиваются в размерах; в конце концов, эти полости сливаются между собой и разделяют образец на части. Если бы увеличение размеров той или иной полости не зависело от места ее расположения, мы получили бы перколяцию, подобную описанной в главе 13. Следовательно, размерность поверхности разлома принимала бы некое универсальное значение, не зависящее от материала. В действительности же, как только исходная полость дорастет до слияния с соседними полостями, возрастает нагрузка на оставшиеся связи и последующая скорость роста полости изменяется в зависимости от ее положения в образце. Эти изменения, безусловно, напрямую зависят от структуры материала, и, следовательно, размерность D совсем не обязана быть универсальной.
Формы облачных и дождевых областей [646, 648]
Глядя на замечательное соотношение Лавджоя, связывающее площадь и периметр облаков (см. рис. 169), невольно задаешься вопросом, нельзя ли в этом случае проделать то же, что мы проделали в главе 28 с земным рельефом, - я имею в виду построение фрактальных карт облачных и дождевых областей, которые нельзя будет ни вооруженным глазом, ни с помощью каких-либо измерений отличить от настоящих метеорологических карт.
Важный ингредиент для случая дождевых областей находим у самого Лавджоя [646], который обнаружил, что промежутки между выпадениями осадков следуют в точности тому же гиперболическому распределению вероятностей, что и разрывности в изменении цен на товарных биржах согласно [341] (см. главу 37).
Наше с Лавджоем совместное исследование [648] построено именно на этом фундаменте. Мы показываем, что гиперболически распределенные разрывности вполне согласуются с широко известным наблюдением, что разрывности в выпадении осадков возникают вдоль почти прямолинейных «фронтов». Для сохранения масштабной инвариантности вводится соответствующий перечень показателей, напоминающий те, что используются в теории критических феноменов, и в еще большей степени показатели турбулентности, предложенные в моей работе [387]. Полученные результаты, надо сказать, вызывают самые положительные эмоции.
Масштабная инвариантность, фракталы и землетресения [637, 638, 639, 619]
В главе 28 мы говорили о том, что земной рельеф представляет собой масштабно-инвариантную фрактальную поверхность и его можно генерировать посредством наложения грубых «ошибок». Тем, кто согласен с подобными утверждениями, гораздо легче принять идею того, что землетрясения (которые представляет собой не что иное, как динамические изменения рельефа) самоподобны, т.е. закономерности, описывающие время их возникновения, территориальный охват и силу, не связаны с каким-либо особым масштабом, а геометрия землетрясений фрактальна. Идея эта является главным посланием, которое вынесет для себя интересующийся фракталами читатель из ознакомления с работами [637, 638, 639, 619] (рекомендую).
А для усмирения гордыни советую подумать о том, что масштабную инвариантность землетрясений обнаружил Омори еще сто лет назад; впрочем, авторы большинства статистических исследований землетрясений по-прежнему настаивают на том, что возникновение землетрясений следует пуассоновскому распределению. Что ж, вряд ли следует ожидать чего-то хорошего (о чем я уже рассуждал в главе 42), когда наука уступает общественному давлению, которое поощряет моделирование и теоретизирование и презирает «простое» описание без «теории».
Фрактальные границы в литиевых аккумуляторах [644, 645]
Электрическому аккумулятору полагается хранить электроэнергию в больших количествах и выдавать ее с нужной скоростью. Так как остальные характеристики зафиксированы, аккумулирующая способность зависит только от объема аккумулятора, скорость же разрядки является характеристикой поверхностей. Об этом знает всякий, кто знаком с фракталами (см. главы 12 и 15), и отсюда же Ален Ле Меоте заключил, что достижение баланса между аккумулирующей способностью и скоростью разрядки являет собой фрактальную задачу.
Поскольку нет никакой возможности реализовать на практике аккумулятор, поперечное сечение которого являлось бы терагоном Пеано (таким, например, как на рис. 106), Ле Меоте с сотрудниками [645] проводил теоретические исследования всевозможных реалистичных конструкций и изучал настоящие аккумуляторы. Поразительна эффективность фрактальной геометрии.
Критические перколяционные кластеры
Перколяция на решетках: испытание модели из главы 13. Указанная фрактальная модель контактных кластеров в бернуллиевой перколяции, предложенная в главе 13, прямо-таки напрашивается на экспериментальную проверку. Спешу вас обрадовать: просьба удовлетворена.
В работе [642] определено число узлов в кластере на расстоянии от начала координат, меньшем R, и установлено верное значение размерности D~1,9. Кроме того, из перехода между фрактальной областью и областью однородности получено значение ξ.
Перколяция в тонких пленках золота и свинца. Бернуллиева перколяция является, безусловно, математическим процессом. Хаммерсли вводит ее в надежде, что с ее помощью можно будет проиллюстрировать и тем самым прояснить многие природные феномены. Применимость фрактальной геометрии к бернуллиевой перколяции была опробована на примере гнусного золота [668] и благородного свинца [641].
Исследователи Au приготовили тонкие пленки при комнатной температуре посредством электронного напыления на окна из аморфного Si3N4 толщиной 30 нм, выращенные на кремниевой подложке. Пленкам была придана переменная толщина, в результате чего вместо одного образца получился целый ряд образцов – от полностью изолирующих до электропроводящих. Предсказания главы 13 оказались верными до последней запятой.
Низколакунарные фрактальные модели некоторых формальных пространств в физике [630]
В статистической физике считается, что иногда полезно постулировать то или иное пространство с дробной размерностью. Математиков же такие пространства выводят из душевного равновесия: мало того, что эти пространства никто нигде не строит, никто даже не берет на себя труд доказать их существование и единственность. Тем не менее, физики получают весьма существенные результаты, исходя из допущения, что упомянутые пространства действительно существуют и вдобавок обладают определенными сильными и желательными свойствами: они инвариантны при смещении, а их интегралы количества движения и рекуррентные соотношения можно получить из евклидовых пространств с помощью формального аналитического продолжения.
Пространства с дробной размерностью способны привести исследователя фракталов в замешательство. С одной стороны, существует большое количество альтернативных фрактальных интерполяционных пространств, и, следовательно, можно говорить о неопределенной интерполяции. С другой стороны, фракталы, которые мы в работе [165] применили для описания физических явлений, вовсе не являются инвариантными при смещении. В этом отношении может создаться впечатление, что фракталы не так хороши, как постулированные пространства с дробной размерностью.
Решение этой проблемы было подсказано аналогичной критикой, направленной в адрес моей первой модели распределения галактик. На тот случай, когда для фрактала невозможна точная инвариантность при смещении, в главах 34 и 35 показано, что можно подойти к инвариантности сколько угодно близко, придав достаточно малое значение лакунарности.
С этой точки зрения в работе [630] рассмотрена некая последовательность ковров Серпинского (см. главу 14), лакунарность которых стремится к нулю. Вычислены некоторые физические свойства и показано, что предельные фракталы с нулевой лакунарностью идентичны по своим свойствам постулированным пространствам с дробной размерностью.
Салфетка Серпинского: Игрушка для физиков
Легко управляемые модели настолько милы сердцу физика, что любая конструкция, обещающая возможность выполнения вычислений без необходимости в приближениях привлекает самое широкое внимание.
Среди разветвленных фигур, рассмотренных в главе 14, наиболее важной является салфетка Серпинского, однако с ней и труднее всего работать. Тем не менее, манипуляциям она не поддается. Некоторые такие манипуляции, забавные и полезные, проведены в работах [663, 656, 657, 617].
Вопреки своему обыкновению, я выбрал для обозначения этой фигуры термин (салфетка Серпинского), не имеющий прямого французского эквивалента. Составители математического словаря не поняли, что под словом gasket я имел в виду ту деталь двигателя, которая предотвращает просачивание жидкости, а обычный словарь отправил их к кораблям и веревкам, т.е. к baderne и garcette. Поскольку смысл моего термина никак не мог соответствовать этим толкованиям, термин переопределили и обозначили им дополнение к тому, что он обозначал изначально! На мой взгляд, здесь лучше подошло бы другое французское слово tamis, т.е. «сито» или «решето».
Клеточные автоматы и фракталы
Для того чтобы показать, что глобальный порядок может быть порожден силами, действующими исключительно между соседними элементами, я придумал пример, описанный на с. 452. Вскоре мне указали на то, что в моем примере действует так называемый «клеточный автомат» в том виде, в каком этот термин определен Джоном фон Нейманом (см. [621]). Улам показал (снова см. [621]), что выход такого автомата может быть очень сложным и выглядеть случайным. В других работах [669, 670, 667] показано, что этот выход может быть и фрактальным.