Фундамент оптимизма — страница 30 из 34

Впрочем, разве социалистическое государство не доказало, что оно способно решать подобные проблемы наилучшим образом?

Итак, вполне реальная возможность повысить «творческий КПД» выпускников, как и воспрепятствовать удлинению сроков обучения, невзирая на стремительно растущий объем знаний. Ну а что противопоставить «мегабитовым бомбам»? Нужен настоящий переворот в индустрии информации, сравнимый с революцией, которую вызвало некогда изобретение книгопечатания.

Больше всего надежд возлагается на новую технику — прежде всего электронно-вычислительную. Создаются машины-переводчики, автоматизированные информационно-поисковые системы, электронные энциклопедии и справочники. Разрабатываются способы микрокопирования текстов; поговаривают о том, что прогресс радиоэлектроники рано или поздно приведет к сверхкомпактным и в то же время сверхвместительным хранилищам информации: так, не исключено, что тогда содержание всей Большой Советской Энциклопедии удастся втиснуть в объем булавочной головки. А космические ретрансляторы типа нашей «Молнии» помогут организовать поистине «молниеносный» обмен информацией между исследовательскими учреждениями, учебными заведениями, предприятиями и библиотеками в общегосударственных и даже в международных масштабах: небесный посредник моментально передаст нужный чертеж или текст в любой уголок страны прямо на телеэкран заказчика, минуя в случае надобности издательства, где рукописи могут залежаться и состариться еще до выхода в свет.

Все это проекты. И путь к их осуществлению нелегок и не скор. Но проблемы, связанные с ними, уже поставлены в повестку дня. Ибо уже сейчас 40–70 процентов всех расходов на науку могут теряться при неполном использовании и повторном получении ее результатов.

Таких проблем, понятно, немало. И для их решения требуется мобилизовать не только интеллектуальные усилия многочисленных исследовательских коллективов. Нужны все новые капиталовложения. Между тем они уже огромны. И продолжают увеличиваться. Но у любого общества, сколь бы богатым оно ни было, средства не безграничны. И проблема их наиболее разумного распределения всегда стояла и будет стоять перед финансовыми органами. Стоит она и перед нами. Конечно, ее решение в условиях плановой экономики упрощается. Но это отнюдь не значит, что оно дается без труда, даже если речь идет не обо всем бюджете в целом, а лишь об одной из многих его составных частей. Скажем, об ассигнованиях на науку. Ведь и в более узких рамках — например, в масштабах Академии наук СССР — тоже нелегко распределить народные деньги по всем многочисленным статьям расходов так, чтобы получить максимальный эффект.

Понятно, почему так важен здесь подход рачительного хозяина, знающего цену каждой копейке; подход не местнический, когда свои посевы на ниве знаний кажутся более значительными, чем любые прочие, а подлинно государственный — тот, что в каждом из нас смолоду воспитывается социалистическим обществом. И разве может он быть чужд нашим ученым, пусть даже по самому роду своей деятельности далеким от «всяких там бухгалтерских материй»? Даже там, где, казалось бы, не очень уместно ставить вопрос по-бухгалтерски прямо — дескать, расходы-то растут, а доходы?

В 1967 году под Серпуховом пущен новый ускоритель. Разгоняя заряженные частицы до скоростей, близких к предельно возможной — световой, он способен сообщать им энергию до 70 с лишним миллиардов электрон-вольт (70 гигаэлектрон-вольт, сокращенно — 70 Гэв). Тогда это была самая большая мощность в мире. Недавно в США сооружен ускоритель на 200 Гэв. А в СССР спроектирован ускоритель на 1000 Гэв.

Но чем мощнее эти сложнейшие машины, тем они дороже. Самый первый циклотрон (он был изобретен и собственноручно изготовлен американцем Э. Лоуренсом в 1930 году) имел довольно низкий потолок мощности — чуть больше тысячной доли Гэв. Зато и стоил всего 1000 долларов. На брукхейвенский синхрофазотрон мощностью 33 Гэв, в создании которого участвовали сотни фирм, затрачено 34 миллиона долларов — так сказать, по миллиону за один Гэв.

Как видно, соотношение между ассигнованиями и мощностью осталось в 60-е годы примерно таким же, как и в 30-е. Но насколько увеличились капиталовложения! За 30 лет — в десятки тысяч раз. Если они будут расти и впредь такими же темпами, то уже в ближайшие десятилетия лягут непосильным финансовым бременем на плечи любого, даже самого богатого государства. Ведь физикам хотелось бы иметь в своем распоряжении микроснаряды энергией в сотни тысяч и даже миллионы Гэв…

Конечно, без ускорителей не обойтись. Но нельзя ли обойтись без «гигантомании», которая стоит бешеных денег? Одна из возможностей — встречные пучки. Но здесь, пожалуй, лучше предоставить слово тому, под чьим руководством разрабатывается этот метод, — лауреату Ленинской премии академику Г. Будкеру, директору Института ядерной физики Сибирского отделения АН СССР.

Свою статью «Экономика микромира» на страницах «Правды» ученый начал с забавной реплики, услышанной на совещании, которое проходило лет двадцать пять назад в Дубне в связи с пуском одного из тамошних ускорителей. Кто-то из присутствующих предложил снять железнодорожную ветку, проложенную специально для подвоза оборудования (после монтажа установки, понятно, в линии уже не было никакой нужды). «Как это снять? — искрение изумился один из строителей. — А продукцию на чем вывозить будете?» Между тем все, что дал ускоритель с тех пор, за двадцать с лишним лет, — это фотографии ядерных реакций. Все они без особого труда поместились бы в одном портфеле.

Да, дело ускорителя — производить научную информацию, нечто эфемерное, и все же так ли уж наивен вопрос о его весомой продукции?

Светящаяся струя частиц, выпущенная из ускорителя в воздух, порождает клубы бурого дыма. Ибо делает возможной реакцию, которая при обычных условиях практически не протекает: азот соединяется с кислородом. Образуется вещество, которое служит ценным промышленным полупродуктом. И не за горами день, считает ученый, когда из многоэтажных бетонных коробок, где работают мощные ускорители, товарные составы начнут вывозить экономически выгодную крупнотоннажную продукцию — например, азотные удобрения. А пока…

Институт ядерной физики Сибирского отделения АН СССР начал разрабатывать ускорители нового типа своеобразным экономическим методом, доказавшим, что фундаментальная наука способна сама себя окупать.

Создание мощного ускорителя распадается на несколько этапов. Поначалу изготовляются установки на низкие энергии. Затем на средние. Казалось бы, каждый опытный образец, сослужив свою службу ученым, должен идти на слом. Ничуть не бывало! Небольшой ускоритель — его можно транспортировать на обычном грузовике — может дать радиоактивность, которой обладают тонны радия. К тому же он не требует толстослойной биологической защиты, ибо абсолютно безопасен, когда выключен. Спрос на такие установки оказался немалым. За какие-нибудь три года удалось заключить хозяйственные договоры на 15 миллионов рублей, что превысило ассигнования по бюджету, получаемые Институтом ядерной физики.

Таким образом, уже сегодня затраты на ускорительную технику могут перекрываться доходами от нее. И перспективы здесь довольно широкие.

Огромно количество зерна, которое пожирают вредители. Его стоимость в масштабах планеты, вероятно, больше ассигнований на самые мощные из существующих ускорителей. Между тем можно подобрать совершенно безопасные для хлеба дозы облучения, при которых вредители перестанут размножаться.

Пучок быстролетных частиц может вести разведку ископаемых, лечить болезни, стерилизовать медикаменты, консервировать пищевые продукты, обеззараживать сточные воды, контролировать качество бетона или металла, просматривая большие толщи материала… И все же, как ни ценна практическая отдача ускорителя, которую скоро будут измерять сотнями миллионов рублей чистой прибыли, его теоретический вклад в физику все-таки ценнее. Как же быть тогда с пресловутой «гигантоманией»? Оказывается, можно строить ускорители с мощью Геркулеса, но без аппетита Гаргантюа.

В брукхейвенском, серпуховском и других подобных ускорителях поток частиц нацелен в неподвижную мишень. Сталкиваясь с нею, пули-протоны заставляют ее ядра упруго подаваться назад, словно перчатка боксера тренировочную грушу. Эффект от такого соударения гораздо меньше, чем если бы навстречу одной «микроперчатке» двигалась другая. И чем мощнее обычные ускорители, тем меньшая часть энергии их луча расходуется с пользой.

Выход был найден в методе встречных пучков. В одном из ускорителей Новосибирского академгородка предусмотрено столкновение протонов и антипротонов. Энергия частиц в каждом из пучков — 25 Гэв. Казалось бы, в сумме это составит 50 Гэв. Но гораздо более высокая эффективность встречных ударов ведет к таким результатам, для получения которых понадобился бы обычный ускоритель на 1300 Гэв. Стоимость такой махины (с неподвижной мишенью) по мировым стандартам превышает миллиард долларов. Новосибирская установка несравненно дешевле.

— Я вовсе не хочу сказать, что время ускорителей с неподвижной мишенью уже миновало, — резюмирует академик Г. Будкер. — Однако нет сомнений, что будущее физики самых высоких энергий — это встречные пучки…

Подобные проблемы стоят и перед другими областями науки. Ибо индустрия идей, как и производство вещей, немыслима без мощного (и, увы, дорогостоящего) оснащения, причем по темпам модернизации она во многих своих отраслях конкурирует с промышленностью.

Ускорители и реакторы, квантовые генераторы и сверхскоростные центрифуги, огромные радиотелескопы и электронные микроскопы, геофизические ракеты и межпланетные станции, луноходы-лаборатории, автоматы-бурильщики — вот арсенал сегодняшней науки. И ее инструментальная вооруженность должна расти раза в полтора быстрее, чем численность самих исследователей, — такое опережение признано целесообразным науковедами. А ведь «машинно-станочный парк» на «фабриках идей» морально устаревает за четыре-пять лет и требует постоянного обновления.