Фундамент. Прочно и надежно — страница 16 из 24

В зависимости от вяжущего в составе смеси существуют цементные, известковые, гипсовые и смешанные строительные растворы, т. е. состоящие из двух вяжущих. Растворы, которые приготовлены на одном вяжущем, называют простыми, на двух и более – сложными, или смешанными. Выбирать тип вяжущего следует в зависимости от назначения раствора, условий его твердения и эксплуатации. В качестве вяжущих применяют гипсы, известь, специальные низкомарочные цементы, шлакопортландцементы, пуццолановые портландцементы, портландцементы. Для улучшения технологических свойств строительных растворов, экономии гидравлических вяжущих практикуют смешанные вяжущие. В строительных растворах применяют известь в виде известкового теста, гипсовое вяжущее в штукатурных растворах используют как добавку к извести.

Каждый тип раствора имеет несколько марок по прочности и морозостойкости , которые зависят от применяемого вяжущего вещества и заполнителя. В качестве заполнителя для строительных растворов используют песок, в котором количество пылевидных и глинистых частиц не должно превышать показатель, соответствующий марке раствора. Крупность песка зависит от назначения раствора. Например, для кирпичной кладки заполнитель может состоять из частиц не более 2,5 мм, а для бутовой кладки, монтажа крупных панелей и блоков величина частиц может достигать 5 мм.

Строительные растворы, как и бетонная смесь, способны обладать различной степенью подвижности. Подвижность – это способность растворной смеси растекаться под действием собственной массы. Необходимую подвижность выбирают в соответствии с назначением раствора. Ее определяют с помощью погружения в раствор стандартного конуса (рис. 9).

Рисунок 9. Определение подвижности строительного раствора с помощью стандартного конуса: 1 – стандартный конус (в разрезе) для определения подвижности строительного раствора; 2 – петля для подвешивания; 3 – шнур; 4 – строительный раствор

Для определения подвижности раствора в него без дополнительных усилий (только под силой тяжести) опускают стандартный металлический конус массой 300 г. Глубина погружения измеряется в сантиметрах. Чем больше эта величина, тем выше подвижность растворной смеси. На подвижность влияют процент содержания воды в растворе и степень крупности заполнителя. Раствор для монтажа стеновых панелей и блоков и расшивки швов между ними должен обладать подвижностью, соответствующей глубине погружения конуса от 5 до 7 см. Для кладочных растворов при возведении конструкций из обыкновенного кирпича, легких бутовых и бетонный камней эта величина составит 9–13 см. Для кладочных растворов при возведении стен из пустотелого и керамического кирпича глубина погружения конуса равна 7–8 см; для кладочных растворов при обычной бутовой кладке (в том числе фундаментной) – от 4 до 6 см. Раствор для заполнения пустот в кладке из природного камня нужно изготавливать с наибольшей подвижностью: глубина погружения конуса в нем составит 13–14 см. Наименьшей подвижностью должны обладать кладочные растворы, которые предполагается уплотнять вибратором: погружения конуса – 1–3 см.

Еще одно важное свойство строительных растворов – их удобоукладываемость . Удобоукладываемостью  называют способность материала укладываться на основание тонким слоем с заполнением всех неровностей без специального уплотнения. Это свойство обусловливается подвижностью и водоудерживающей способностью.

Водоудерживающая способность показывает, сколько воды может удерживать раствор в своем составе. Дело в том, что материал, с которым соприкасается раствор, при наличии пор способен забирать в себя влагу из раствора, в результате чего он может расслоиться (при выделении воды заполнитель осядет) и потерять несущую способность. Чтобы получить нужную водоудерживающую способность раствора, необходимо соблюдать пропорции веществ при его изготовлении. При увеличении расхода цемента, замене его на известь, введении всевозможных добавок, таких как глина, зола, активных веществ, водоудерживающая способность повышается. Состав раствора можно найти в нормативных или рекомендательных таблицах, указывающих зависимость свойств раствора от его марки и назначения.

Состав строительного раствора обозначают количеством материалов в 1 м3 раствора или относительным соотношением исходных материалов. В этом случае расход вяжущего принимают за единицу. Для простых растворов состав обозначают 1: 4. Это значит, что на 1 часть цемента приходятся 4 части песка. Для сложных растворов состав обозначают 1: 3: 4, т. е. на 1 часть цемента приходятся 3 части извести и 4 части песка.

...

Если строительный раствор необходимо применять в зимних условиях, к его составу предъявляют дополнительные требования. При температуре ниже –20 °C марку раствора следует повысить на две ступени по сравнению с расчетной. Кроме того, в раствор нужно ввести противоморозные добавки, которые применяют и для бетонной смеси. Раствор не должен замерзнуть: его температура при монтаже обязана быть выше 15 °C при температуре воздуха выше –20 °C и выше 26 °C при температуре воздуха ниже –20 °C.

Растворные смеси можно укладывать как на пористое, так и на плотное основание. В первом случае прочность растворов в затвердевшем состоянии выше. Прочность строительных растворов характеризуется их маркой. Ее устанавливают по пределу прочности при сжатии образцов стандартных размеров 40 × 40 × 160 мм лабораторным путем. Выдерживают образцы 28 суток при температуре 15–25 °C. Марки растворов – 4, 10, 25, 50, 75, 100, 150, 200, 300. Морозостойкость обозначают значком Мрз. Ее определяют числом попеременного замораживания и оттаивания и делят на марки – от 10 до 300.

Марку раствора выбирают в зависимости от вида и условий работы конструкций и степени долговечности зданий и сооружений. Для кирпичной и каменной кладки растворы применяют только цементные, соотношением 1: 3, причем ни известь, ни глину добавлять не разрешается. Расход цемента при приготовлении раствора зависит от его марки. Строительный раствор приготавливают вручную небольшими порциями, т. е. в таком количестве, чтобы его хватило на 2 ч непрерывной работы.

Кладочный раствор для фундамента делают на основе портландцемента или, в случае наличия на участке строительства агрессивных сульфатных вод, на основе сульфатостойких цементов.

Отделочные растворы в цикле нулевых работ применяют только для отделки и одновременно гидроизоляции цоколя. Отделочные растворы должны обладать достаточной степенью подвижности, хорошо сцепляться с основанием и практически не менять свойств при твердении (иначе на поверхности уложенного раствора образуются трещины). Крупность заполнителя – не более 2,5 мм. Для обработки каменных и бетонных стен применяют цементно-известковые растворы, для оштукатуривания деревянных поверхностей – известково-гипсовые. Если поверхность подвергается систематическому увлажнению, в качестве вяжущего в составе раствора следует взять портландцемент.

Для любых строительных растворов можно использовать цемент на основе портландцементного клинкера. Такой цемент изготавливают путем совместного помола клинкера с гипсом, минеральными добавками и наполнителями. Клинкер обязан составлять не менее 20 % от общей массы смеси. В цемент для строительных растворов можно вводить пластификаторы и водоотталкивающие добавки (их содержание не должно превышать 0,3 % общего объема цемента). Также полезны воздухововлекающие добавки в объеме до 1 % от массы смеси. Схватывание такого цемента должно начинаться не ранее, чем через 45 мин после затворения, и заканчиваться не позднее, чем через 12 ч после затворения.

При возведении железобетонного фундамента необходимы также специальные гидроизоляционные растворы. Их можно приготовить на основе водонепроницаемого расширяющего цемента высокой марки. Для гидроизоляционной штукатурки раствор должен состоять из 1 части цемента (по массе) и 2,5–3,5 частей песка. Если гидроизоляция будет подвержена воздействию агрессивных вод, раствор нужно приготовить на основе сульфатостойкого пуццоланового портландцемента.

Если в бетоне появились трещины, их можно заделать раствором на основе цемента с добавками в виде алюмината натрия, полимера или битумной эмульсии.

На прочность кладки влияют марка раствора, толщина и равномерная плотность швов. Марка обозначается буквой М и числом.

Несущая способность раствора – это и есть его марка. Если горизонтальные швы выполняют из растворов низких марок, то при сжатии получается поперечное расширение кладки. У растворов же высоких марок такая деформация меньше, а значит, прочность кладки выше.

В случае увеличения толщины швов уменьшается прочность кладки. Это получается потому, что прочность раствора меньше прочности материала, из которого выполнена кладка. В случае же уменьшения толщины шва прочность кладки не повысится. Это происходит потому, что кирпичи или камни, уложенные друг на друга, соприкасаются между собой, так как раствор представляет собой тонкий слой, который не позволяет кирпичу находиться в отдельном «панцире». Кирпичи в данном случае работают не на сжатие, а на изгиб – это и вызывает снижение несущей способности кладки. Оптимальная толщина горизонтального шва – 10 мм, тогда уложенные ряды кирпича работают на сжатие, что позволяет повысить прочность кладки.

Равномерная толщина швов зависит от пластичности раствора. Чем он пластичнее, тем легче выполнять шов одинаковой толщины. Осаживание укладываемых на раствор камней уплотняет шов и повышает прочность кладки. Недостаточное заполнение раствором вертикальных швов особого влияния на прочность кладки не оказывает, но снижает ее теплоизоляционные свойства.

Такие элементы, как оконные и дверные проемы, ослабляют кладку. Нагрузка от ее вышележащих рядов перераспределяется на другие участки – простенки. Для повышения несущей способности перегруженных участков кладки в них укладывают арматуру.