Какой бы красивой ни была чистая математика, не она будоражит меня больше всего. Я всегда стремился применять математику в необычных местах. Я использовал сети для планирования городской застройки, сети железных дорог или отдельных кварталов. Я вижу уравнения во взглядах городских жителей, в аплодисментах студентов после услышанной презентации и в мошпите, который устраивают фанаты хэви-метала на концертах. Я смоделировал движение рыб среди кораллов на Большом Барьерном рифе, демократические перемены на Ближнем Востоке, движение кубинских муравьев-листорезов, путешествие роев саранчи по Сахаре, распространение болезней в деревнях Уганды, принятие решений европейскими политиками, танцующих пчел из Сиднея, американских инвесторов и даже трубчатые структуры, которые создаются японскими слизевиками. Для меня нет предела. Все может быть и все должно быть смоделировано.
В начале карьеры я понял, что отличаюсь от многих коллег, которые специализируются на конкретных уравнениях и отдельных областях применения. Я хотел увязнуть в данных и работать вместе с биологами и социологами. Мне нравится абстрактная красота уравнений, но формулы бессмысленны до тех пор, пока они не говорят что-то о реальности. Именно поэтому, хоть и бо́льшая часть моего дня проходит перед компьютером или у доски, иногда я сооружаю гоночную трассу для саранчи, разговариваю с министрами государств о решении социальных проблем, околачиваюсь в лесу, считая муравьев, или раздаю планшеты в школе, чтобы понять, как дети играют в интерактивные математические игры. Я не позволяю логике диктовать мне, какие проблемы нужно изучать, – я даю волю эмоциям, чувствам (в том числе и чувству юмора). Я играю в математику так же, как я играю в футбол, только намного, намного лучше.
У всех моих, казалось бы, случайных проектов всегда было единое обоснование. Я вижу очень разные части мира связанными друг с другом и использую математику для создания соединений между ними. Я использую математику, которая не боится запачкаться, чтобы поменять тактику в перерыве или привлечь игроков со всего мира для того, чтобы попинать мяч. Это та математика, целью которой является развлечь и впечатлить. В этой математике мы отдаем должное не только отдельным личностям, но и всей команде. Именно такой подход и является футболоматикой.
В этой книге я использую футболоматику, чтобы приступить к решению целой порции проблем. Футбол всегда является отправной точкой, но я не останавливаюсь на этом. Каждая глава – это рассказ о том, как футбол и математика могут работать вместе, чтобы создать мощные аналогии. Я показываю, что тренеры сражаются за очки по той же тактике, по которой птицы воюют с червяками, а раковые клетки борются с нашими телами. Я раскладываю сетевую структуру команд из Лиги чемпионов; я показываю, как распространение футбольных чантов[2] может объяснить все – от вежливых аплодисментов и трансферных слухов до болезней в беднейших районах Африки. Я показываю, что, хотя «волна» на стадионе может быть забавой для болельщиков, для рыб она жизненно важна. Эти истории связывают воедино физический, биологический, социальный и футбольный миры.
За этими рассказами прячется более глубокое сообщение. Философия футболоматики – это более податливый и креативный стиль математики. Речь идет о математике, которая пересекает границы, создает связи и аналогии. Речь идет о математике, которая может быть применена ко всему. Я использую футбольные аналогии, чтобы объяснить другие сферы жизни; и я использую примеры из других областей для объяснения футбола. Эти аналогии становятся возможными, потому что математические модели открывают мощный способ видеть эти связи. Когда вы работаете разработчиком математических моделей, вы видите взаимоотношения, которые другие люди не замечают.
Как и в футбол, любой способен играть в моделирование. Если вы тот, кто видит вещи отчетливее через аналогии с футболом, спортом, погодой, фильмами и музыкой, аналогии с природой или любой другой тип аналогии, вы уже на шаг ближе к тому, чтобы стать математическим моделистом. Если вы можете проводить хорошие аналогии, тогда вы сможете создавать хорошие математические модели. Быть моделистом – это прежде всего использовать ваше воображение, а затем фокусировать внимание на проблеме. Это творческая деятельность, но она подчинена правилам и процедурам. Я хочу показать вам, как научиться думать таким образом и помочь (я надеюсь на это) лучше понять вашу жизнь и окружающий мир. Математика – это способ увидеть проблемы и найти решения.
Думая футболоматично, вы увидите игроков, команды, тренеров и болельщиков в новом свете. Вы поймете, почему Бастиан Швайнштайгер – торнадо, защитники «Баварии» – львы, а команда «Барселоны» 2015 года – это реактивный истребитель. Вы узнаете, как мотивировать команду, заставляя их работать как муравьи, и как противодействовать бездельникам путем изменения стимулов. Вы увидите, почему ставки похожи на попытку построить коммуникационный кабель в будущее; поймете, почему беттеры, которые почти ничего не знают об игре, могут сделать умные прогнозы вместе, и осознаете, почему вы никогда не должны доверять экспертам. Вы даже можете узнать, как заработать пару фунтов у букмекеров.
В этой книге объясняются важные модели с помощью слов, компьютерных симуляций и изображений. Вместо того чтобы заполнять страницы непонятными символами, я приведу осмысленные расчеты, которые показывают внутреннюю работу футбольной команды. Вам не нужно раскапывать свой графический калькулятор. Я буду использовать свой ноутбук для обработки больших массивов данных за матч. Нам также понадобится наша верная доска, она будет использоваться для набросков схем и создания интуитивно понятных изображений. Я не предполагаю глубокого знания математики, но для тех, кто хочет узнать больше, я включил детали в замечания и пояснения. Я покажу, что создание математических моделей – это ви́дение закономерности и формирование аналогии. К концу книги вы будете способны найти математику везде.
Я не предполагаю, что у вас есть глубокие познания в футболе. И также с самого начала буду честен с вами. Хоть я и гарантирую вам, что эта книга даст вам новый взгляд на футбол, я знаю свои недостатки: я не всемирно известный тренер, а всего лишь достаточно известный академик. Прежде чем начать заниматься исследованиями для книги, я был обычным британским мужчиной. Я смотрю футбол, читаю о нем, играю в футбол с друзьями и провожу свободное время, тренируя команду (очень талантливую) 10-летних ребят. Друзья, которые видели мою игру, будут смеяться очень долго, когда узнают, что я написал книгу на эту тему.
Вместо того чтобы притворяться экспертом, я предлагаю другую точку зрения. Математики и экономисты уже пробовали себя в работах о футболе – правда, очень поверхностно. Они доказывали, что команда станет забивать больше голов, изменив способ подачи угловых или вбрасывания из аута. Ведущим мировым игрокам они советуют, как бить пенальти. Они приводят статистические аргументы в пользу того, почему Англия выиграет следующий чемпионат мира или почему не сможет сделать этого никогда. Некоторые из этих математически обоснованных предложений имеют смысл, другие – нет. Я рассмотрю эти утверждения, попытаюсь их проанализировать и создать собственные аргументы, основанные на моделировании.
То же относится и к футболу по телевизору. Студии теперь оснащены передовыми технологиями для показа и анализа основных моментов и тактики. Теперь вопрос для нас, зрителей: какую полезную информацию предоставляют все эти визуализации? Анимация расположения игроков может выглядеть хорошо, когда рядом стоит Джейми Каррагер. Но ведь он разбирается в футболе – в отличие от программиста, создавшего графику. Когда мы видим новые способы отображения данных, мы должны быть осторожны, чтобы не путать представление с содержанием.
Эта перегрузка данными и статистикой присуща не только футболу. Математика используется для решения всех научных и общественных проблем. Цены на жилье, планирование проектов, друзья в Facebook, вирусный маркетинг, искусственный интеллект, онлайн-покер, экономический рост, генная инженерия, вычислительная биология, план действий на случай чрезвычайной ситуации, а также большая часть остальной современной жизни подвержены влиянию математики. Поэтому, даже если вы не особенно заинтересованы в том, чтобы наблюдать за двадцатью двумя людьми, которые пинают мяч по полю, вы не сможете остаться вне мира математики. Вам нужно понять, как работает прикладная математика и как думаем мы, математики.
Футбол предлагает способ понять связь между математикой и современным миром. В «Футболоматике» речь идет о том, как аналогия используется для понимания науки, общества и футбола. Поэтому забудьте скучные правила с синусами и косинусами – я покажу вам, что суть математического моделирования заключается в умении мыслить свободно и широко. Мы начнем на поле, затем перейдем к тренерской скамейке и, наконец, окажемся в толпе, пытаясь перехитрить онлайн-букмекеров. Мы собираемся отправиться в математическое приключение по этой прекрасной игре.
Часть IНа поле
Глава 1Я никогда ничего не предсказывал и никогда не буду впредь
Полузащитник сборной Англии Пол Гаскойн однажды сказал: «Я никогда ничего не предсказывал и никогда не буду впредь».
Для меня это утверждение настолько же гениально, как и его гол в ворота шотландцев на Евро-96. В десяти словах он показывает, почему предсказания неизбежны, хотя и ненадежны: после пяти слов он заблуждался относительно прошлого и настоящего, а после следующих пяти – еще и будущего. Но, несмотря на то что он ошибался, есть в словах Газзы глубокая мысль: во всем есть закономерности.
Есть закономерности в том, как долго мы добираемся на работу в утренний час пик. Есть закономерности в сетях наших друзей и в том, как часто мы с ними встречаемся. Закономерности есть и в том, что мы едим на ужин и что покупаем в супермаркете.
И конечно же закономерности присутствуют в футболе.
Сложность заключается в том, чтобы обнаружить и понять эти закономерности. Как только мы это сделаем, то сможем начать прогнозировать.
Случайный настольный футбол
Мое увлечение закономерностями берет начало с огромной оранжевой книги в твердом переплете, в которой было полным-полно статистических данных по футболу. Эту книгу я получил на Рождество, когда мне было восемь. Я мог часами сидеть, изучая страницы с цифрами. Я обожал таблицы, в которых названия команд шли сверху и в колонке слева, а в ячейках указывались результаты матчей между ними. Я изучал таблицу, подсчитывая все голы и отыскивая необычные результаты. 4:3 был моим любимым, 5:2 тоже был неплохим.
В настоящее время у меня нет столько времени, чтобы читать футбольные альманахи. К счастью, поиск нужных результатов и таблиц в Интернете занимает считаные секунды. Если вы это сделаете, то почувствуете непредсказуемость, о которой говорил Гаскойн. Сезон Премьер-лиги-2012/13 был очень хорош – в нем хватало захватывающих матчей и неожиданных результатов. «Ливерпуль» дважды выиграл со счетом 5:0 и еще один раз 6:0, но не смог квалифицироваться в еврокубки. Закончился же он выходом на пенсию Алекса Фергюсона, короля неожиданных поворотов судьбы на последних минутах. Его последняя игра у руля «Манчестер Юнайтед» не стала исключением: ничья 5:5, в которой «Вест Бромвич Альбион» забил три гола в последние 10 минут. «Футбол, черт возьми!» – как сказал однажды Ферги.
Эти результаты – захватывающие исключения, самые запоминающиеся матчи сезона. Было также довольно много скучных нулевых ничьих, о которых забыли фанаты, но не статистика. Если мы хотим понять основную закономерность, мы должны включить и эти матчи в наш анализ. Рисунок 1.1 – гистограмма количества голов во всех матчах Премьер-лиги в сезоне-2012/13. Среднее количество забитых мячей составило чуть меньше трех за матч – точнее, 2,79.
Рисунок 1.1. Гистограмма количества голов, забитых в сезоне-2012/13 английской Премьер-лиги.
Гистограмма показывает, как часто встречаются те или иные результаты матчей. Всего было тридцать пять безголевых ничьих, что можно увидеть на первом столбце нашей гистограммы. Последний матч Фергюсона в том сезоне был одним из двух, которые закончились с десятью забитыми голами, – это можно увидеть справа. Наиболее популярным количеством забитых голов в матче было три, и в большинстве этих игр финальный счет был 2:1. Закономерность начинает проявляться. Следующий шаг – посмотреть, можем ли мы понять, откуда эта закономерность появилась. Для этого нам нужна математическая модель.
Я интересовался математическим моделированием почти так же долго, как и статистикой. Еще одним важным хобби во времена, когда я читал большой оранжевый футбольный альманах, была игра в настольный футбол Subbuteo[3]. Вместе с другом Дэвидом Патерсоном я основал лигу Subbuteo. Мы играли каждый день после школы, успевая сыграть пять или шесть матчей перед ужином. Результат каждой игры мы записывали. Но у нас никогда не было времени на то, чтобы сыграть все 380 игр, составляющих турнир (20 команд, каждая из которых играет 19 домашних игр; 20 × 19 = 380 матчей). В сутках просто не хватало часов для этого.
Ограниченные родителями, которые думали, что мы должны спать и есть, Пэтци и я были вынуждены найти другой способ завершить лигу. Решением стали игральные кубики. Пэтци бросал кубик для одной команды, а я – для другой. После этого мы отнимали по единице от результата и получали итоговый счет. Если «Арсенал» играл с «Манчестер Сити», он бросал красный кубик, а я голубой. Если красный показывал пять, а голубой три, это означало победу «Арсенала» со счетом 4:2. Эта модель может генерировать игры с диапазоном забитых голов от нуля до десяти, в точности как гистограмма Премьер-лиги.
После множества бросков кубиков и небольших корректировок в пользу наших любимых клубов мы получили все результаты. Мы составили таблицу, статистику и аккуратно все это записали на линованной бумаге. Я думаю, мне суждено было стать математиком (Дэвид же теперь успешный бухгалтер).
Бросание костей – очень простой пример математической модели, но с ним есть несколько проблем. Незадолго до Рождества 2012 года «Челси» обыграл «Астон Виллу» со счетом 8:0, чего просто не могло произойти в нашей модели. Еще одной проблемой стало то, что нулевые ничьи в футболе происходят очень часто. Если же брать кубики, то 0:0 встречается столько же раз, как и 5:5. Однако в гистограмме ноль голов в одной игре почти в двадцать раз вероятнее, чем десять. Эта модель не работает. Футбольные игры – не случайный бросок кубиков.
Но матчи в футболе случайны в том или ином отношении. Непредсказуемость делает футбол и другие командные виды спорта интересными. Если во время просмотра матча вы отвлеклись на несколько секунд, вы можете пропустить важную атаку и внезапный гол. Мне, как моделисту, это сообщает кое-что важное. Гол может случиться в любую минуту матча. Несмотря на всевозможные факторы, определяющие количество голов, голевые моменты более или менее случайны.
Мы можем превратить это утверждение в симуляцию. Представим футбольную игру как девяносто одноминутных отрезков, в каждом из которых гол в равной степени возможен. При среднем 2,79 гола за игру вероятность забитого мяча в любом из этих отрезков равна 2,79/90 = 0,031. Это означает, что наш шанс увидеть гол в любую случайно выбранную минуту составляет примерно 1 к 32. Не такой уж и большой, но достаточный для того, чтобы вы продолжали смотреть.
Используя эту модель, мы можем запустить компьютерное моделирование на 90 минут, где в каждой имитируемой минуте гол будет забит с вероятностью 0,031. Если мы проведем симуляцию множества матчей, мы сможем узнать, как выглядит типичный сезон. Такой симулированный сезон показан на рисунке 1.2 как сплошная линия, наложенная на гистограмму реального сезона Премьер-лиги-2012/13.
Модель показала хорошее соответствие с реальностью. Не забывайте всю сложность игры. Тренер, который кричит у кромки поля. Фанаты, пытающиеся подбодрить команду или (чаще всего) доказывающие, насколько она никчемна. Мысли в головах игроков, когда они говорят себе, что вот он, шанс забить. Кажется, будто ни один из этих факторов не влияет на распределение забитых голов. Однако на самом деле все эти факторы вместе и порождают тип случайности, допущенный в модели.
Сплошная линия на рисунке 1.2, созданная моей симуляцией, известна как распределение Пуассона. Такое распределение возникает, когда время предыдущих событий не влияет на будущие события. Это именно то,
Рисунок 1.2. Гистограмма количества голов, забитых в сезоне-2012/13 английской Премьер-лиги (столбцы), в сравнении с распределением Пуассона (сплошная линия).
что я предположил в своей симуляции, и это то, что на самом деле происходит в футболе: ни количество забитых голов, ни количество времени не влияют на вероятность того, что будет забит еще один мяч. Полученное распределение Пуассона отражает общую форму гистограммы количества голов[4]. События делают каждую минуту футбольного матча непредсказуемой, отсюда и появляется такое распределение. Это закономерность, которая возникает из абсолютной случайности.
Я не хотел рассматривать Премьер-лигу, потому что заранее знал о ее соответствии распределению Пуассона. Так получилось, что я все-таки остановился на футболе. Я мог бы выбрать любой вид спорта, в котором голы забивают в любое время. Чтобы убедиться в этом, я просмотрел все результаты игр НХЛ в сезоне-2012/13.
Рисунок 1.3. Гистограмма количества голов, забитых в сезоне-2012/13 НХЛ (столбцы), в сравнении с распределением Пуассона (сплошная линия).
За 60 минут основного времени в среднем были забиты 5,2 шайбы. Рисунок 1.3 показывает гистограмму количества голов в 720 сыгранных играх сезона. Сплошная линия – соответствующее распределение Пуассона.
Более высокое среднее число голов смещает пик в гистограмме вправо, но симуляция снова соответствует данным. Данные и модель практически не отличаются, и небольшое расхождение в матчах с четырьмя забитыми шайбами может объясняться колебаниями от одного сезона к другому[5]. В хоккее голы забиваются чаще, но ровно так же случайно, как и в футболе.
Те, кого лягнула лошадь
Если вы станете мыслить категориями моделирования случайных процессов и распределения Пуассона, то вы будете видеть их повсюду. Если вы изучаете статистику в университете, лучшая (и единственная) шутка лектора заключается в том, что прибытие автобуса также попадает под распределение Пуассона. Автобусная компания отправляет транспорт по расписанию, но на его путь влияет множество различных факторов: старик слишком долго заходит в автобус или велосипедист занял полосу для движения автобусов. Еще один классический пример – количество ламп накаливания, которое вам приходится менять в доме ежегодно. Каждый раз, когда вы включаете свет, есть маленький шанс того, что элемент перегорит. Суммируйте все подобные случаи, и вы получите распределение Пуассона.
Это распределение было названо в честь Симеона Дени Пуассона – француза, который первым описал это явление в начале XIX века. Однако его работа делала акцент на математические уравнения, лежащие в основе распределения, не рассматривая его использование для моделирования на практике. В том смысле, в котором использую его я, распределение применял поляк Ладислав Борткевич, который работал в Германии в 1898 году[6]. Он исследовал два набора данных. Первым был набор жутких статистических данных за 24 года о самоубийствах детей в возрасте до десяти лет. Второй (лишь немногим менее шокирующий) касался солдат, которые умерли после того, как их случайно лягнула или иным образом ударила лошадь. Борткевич в течение двадцати лет изучал по четырнадцать полков ежегодно, отмечая количество солдат, убитых таким образом. Очевидно, он не понял, что всего несколько лет назад была создана Футбольная лига Англии. Этот факт мог предоставить ему все нужные данные без необходимости вникать в статистику смерти Германии.
В обоих наборах данных Борткевич нашел значительное соответствие с распределением Пуассона. Смерти от ударов лошади были редкими. Из 280 полков, которые он изучал, в 144 не было ни одного смертельного случая. Но в двух невезучих полках были зафиксированы по четыре смерти за один год. Используя распределение Пуассона, Борткевич смог показать, что в этих полках не обращались с лошадьми хуже, чем в других, – в тот год им просто не повезло. Возможно (а возможно, и нет), футбол важнее вопросов жизни и смерти, но все три подчиняются одним и тем же правилам.
Сравнение с распределением Пуассона – одна из первых вещей, которые я делаю, когда получаю новые данные. Иногда коллега приходит в мой кабинет с недавно собранными экспериментальными результатами. «Странно, – говорит он. – Большая часть рыбы никогда не плавает вблизи хищника, но есть одна рыбина, которая проплыла мимо него четыре раза! Она должна быть очень смелой или что-то в этом роде». Спустя три минуты я черчу распределение Пуассона и накладываю его на данные моего коллеги. «Нет, твоя рыбина не была особенно смелой. Это была всего лишь статистическая необходимость». Быть преследуемым хищником раз за разом равносильно разгромному поражению со счетом 5:0. Плохо, когда это случается, но это может произойти с каждым.
Распределение Пуассона является нашим первым примером математической аналогии. Оно работает во многих контекстах. Оно работает для футбольных матчей, для лампочки и для смертей от удара лошади. Всякий раз, когда есть основания предположить, что события могут произойти неожиданно, в любое время и независимо от того, сколько событий уже произошло, следует ожидать распределения Пуассона.
Если отойти от футбола, современное использование распределения Пуассона в большинстве своем продолжает традицию, начало которой положил Борткевич. У статистиков, похоже, есть извращенное очарование смертью, травмами и несчастными случаями. Или, может быть, мы просто платим им за решение тех проблем, которые могут случиться с нами. Таким образом, нам не придется о них думать. Каковы бы ни были причины их интереса к неудачам, статистики обнаружили распределение Пуассона в автомобильных авариях, столкновениях с грузовиками, травмах головы, отказах двигателей в самолетах, банкротствах, самоубийствах, убийствах, несчастных случаях на работе и количестве опасных строительных объектов[7]. Они даже обнаружили его в количестве войн с 1480 по 1940 год. И когда они заканчивают смертями и травмами, то ищут распределение Пуассона в опечатках, производственных дефектах, сбоях в сети, вирусных атаках на компьютеры и разводах. Будь то смерть или разрушение, невезение или ошибки – везде можно обнаружить одну и ту же закономерность.
В 2015 году Кристиан Томасетти, прикладной математик, и Берт Фогельштейн, доктор медицины, использовали статистическую аргументацию для доказательства того, что две трети случаев заболевания раком были вызваны «невезением»[8]. Хотя некоторые виды рака могут быть связаны с выбором образа жизни (например, рак легких, вызванный курением), это еще не все. Более важная часть заключается в неизбежных клеточных делениях, которые происходят в наших телах. Каждый раз, когда клетка делится, существует малая вероятность генетической мутации, которая может вызвать рак. Кристиан и Берт обнаружили, что рак с большей вероятностью образуется в тех частях тела, где клетки делятся быстрее.
Это исследование вызвало некоторые споры. Если рак такой непредсказуемый, то почему мы должны тратить так много денег на исследование причин его появления? Чтобы оправдать использование термина «невезение» и лучше объяснить свои выводы, Кристиан и Берт провели аналогию с автомобильными авариями. Они сказали, что чем больше времени вы проводите в машине, тем больше вероятность того, что попадете в аварию. Стиль управления автомобилем влияет на вероятность, но время за рулем также очень важно.
Параллель с футболом работает так же хорошо, если не лучше. Вы можете думать о каждом делении клеток в вашем теле как об отдельной минуте футбольного матча. Когда ячейка делится, есть (очень) крошечный шанс случайной раковой мутации, так же как есть (гораздо больший) шанс пропустить гол в футбольном матче. Именно в этом смысле рак может считаться невезением. Иногда наша команда не пропускает ни одного мяча за игру; хотелось бы надеяться, что мы проживем нашу жизнь без того, чтобы заболеть раком. Хотя иногда мы проигрываем потому, что соперник был силен, никто не может отрицать, что удача играет важную роль в любом конкретном матче. Наше здоровье похоже на субботний день, когда вы наблюдаете за игрой с трибун – не все голы можно предотвратить.
Не все происходящее с нами сводится к случайности. Многие болезни можно предотвратить, если мы выберем здоровый образ жизни, а пропущенные голы часто случаются из-за плохой защиты. Но осознание того, что многое из происходящего с нами несет случайный характер, иногда может помочь смириться с вызовами, которые бросает нам жизнь. Не все в жизни можно предсказать.
Объясняется случайностью
Именно непредсказуемость футбольного матча от одной минуты к другой и создает распределение Пуассона по прошествии 90 минут. Мы знаем среднее количество голов, забитых в матче, но их время непредсказуемо. Как итог – некоторые результаты становятся намного более вероятными, чем другие. Парадокс здесь заключается в том, что эти итоги объясняются случайностью. Тот факт, что голы случаются произвольно во времени, делают возможным предсказание закономерности результатов. Эту идею очень сложно понять, но это правда. Факт случайности какого-либо события помогает нам объяснить это и предугадать, как часто оно будет происходить. Случайность позволяет нам делать всевозможные прогнозы о будущем.
Математики используют этот трюк постоянно. В начале нового футбольного сезона, в преддверии чемпионата мира или премии «Оскар» в газетах часто пишут о «гениальном» математике, который предсказал вероятность победы определенных команд или фильмов. Эти прогнозы зачастую выглядят обоснованными, а иногда они оказываются и верными. Но откуда они берутся?
Я открою вам секрет. Эти гении обычно используют распределение Пуассона и немного справочной информации о командах или фильмах. Для моделирования результатов в футбольных матчах используется такая хитрость – рассчитать показатели забитых и пропущенных голов для каждой команды и затем симулировать матчи между ними. Например, в Премьер-лиге сезона-2012/13 «Арсенал» забивал в среднем 2,47 мяча в домашних играх и 1,32 в матчах на выезде. Пропускала команда 1,21 гола дома и 0,74 на выезде. Собирая такую статистику для каждой команды, а затем моделируя игры между всеми парами, мы можем создавать прогнозы на предстоящий сезон. Пример такого предсказания приведен в таблице 1.1, где я использовал данные из сезона-2012/13 и модель, чтобы спрогнозировать четверку лучших в сезоне-2013/14[9].
Таблица 1.1
Лучшие четыре клуба после первой симуляции сезона-2013/14, основанной на коэффициенте забитых голов в течение сезона-2012/13
Этот прогноз не слишком разошелся с тем, что было на самом деле. В реальности «Манчестер Сити» стал чемпионом, оторвавшись на два очка от «Ливерпуля», а «Челси» занял третье место. Но эта таблица – лишь один из многих вариантов четверки, который я получал при нажатии кнопки «Запустить» на компьютере. Каждый раз, когда я запускаю симуляцию, команды встречаются друг с другом дома и на выезде, счет матча выбирается случайным образом на основе средних показателей забитых и пропущенных голов, и я составляю таблицу на основе результатов. Каждый запуск дает разные результаты, иногда совсем разные. В качестве еще одного примера можно привести таблицу 1.2.
Таблица 1.2
Лучшие четыре клуба после второй симуляции сезона-2013/14, основанной на коэффициенте забитых голов в течение сезона-2012/13
Как фанату «Ливерпуля», этот вариант мне нравится намного больше. Он отображает альтернативную реальность, в которой Стивен Джеррард не поскользнулся в решающей игре против «Челси», а «Ливерпуль» выиграл свой первый чемпионат почти за 25 лет. Джеррард перенес бы позитивную энергию на чемпионат мира, где Англия победила, а сам Стиви Джи был бы посвящен в рыцари. Существует множество возможных альтернативных реальностей, поэтому я могу выбрать ту, которая мне больше всего нравится.
К сожалению, объективный ученый во мне чувствует, что ему необходимо сообщить все результаты симуляций. Всего пара минут уходит на то, чтобы на моем ноутбуке запустить симуляцию Премьер-лиги десять тысяч раз, и каждый раз я получаю разный результат. Какой бы интересной ни была каждая из вариаций, по отдельности они несущественны. Важно обобщить, что происходит во всех десяти тысячах. Как часто та или иная команда выигрывает титул? Мы видим, что «Ливерпуль» стал чемпионом всего в 11,5 % симуляций. «Манчестер Юнайтед», победивший в лиге сезоном ранее, выиграл в 26,2 %. «Челси» набрал 19,2 %, «Арсенал» – 17,6 %, «Манчестер Сити» – 12,8 % и «Тоттенхэм» – 6,0 %.
Оглядываясь назад, мы можем увидеть, что эти предсказания были неверными. «Манчестер Юнайтед» сменил тренера и провел ужасный сезон. «Манчестер Сити» и «Ливерпуль» доминировали, обе команды забили более ста голов. Но дело не в этом. Я, конечно, не собираюсь утверждать, что уже создал лучшую модель футбола. Мы только в начале нашей истории, и я не хотел бы раскрывать все карты сразу.
Важным моментом является вот что. Хотя эта модель основана на случайности и не совсем правильная, она в то же время не является абсолютно неправильной. Предполагаемыми чемпионами становятся преуспевающие команды, а итоговая таблица выглядит похожей на реальные результаты сезона или по крайней мере не слишком отличается от ожидаемых. И мы получили это без существенных размышлений. Мы просто симулировали голы в случайном порядке (причем у каждой команды был свой показатель забитых голов) и получали финальную топ-четверку. Это почти полная противоположность непредсказуемому футболу, который описывал Пол Гаскойн. Футбол очень предсказуем. Более 400 игроков на протяжении всего сезона Премьер-лиги каждую неделю бегают и пинают мяч, а побеждает все равно большой клуб из Лондона или Манчестера.
Прогнозирование, основанное на случайности, – это основное применение математики в обществе сегодня. Пока вы ожидаете оператора на линии, аналитик уже изучил скорость, с которой звонки поступают в справочную службу и выяснил, как долго люди готовы ожидать. К тому моменту, когда банк предоставляет деньги маленькому бизнесу или новому домовладельцу, он уже определил вероятность банкротства и применил распределение Пуассона, чтобы выяснить, со сколькими банкротствами он столкнется в ближайшие годы.
Прогнозирование не сможет точно сказать вам, какой клуб победит в чемпионате, как долго вы будете ожидать на линии и какая компания станет банкротом. Речь идет о частоте прошлых событий для расчета вероятности событий в будущем. Все эти предсказания возникают из математической модели, основанной первоначально на немецких солдатах, которых лягают лошади. Если вам нужна простая аналогия, вы можете сказать, что ожидание гола «Ливерпуля» похоже на ожидание автобуса номер 19 в праздничный день – сначала нет ни одного, а затем два или три приходят один за другим. Благодаря этой модели я сделал эту аналогию полезной. Математика позволяет нам выявить особенности, связанные с прибытием автобуса, футбольными матчами, банкротствами, раковыми заболеваниями и телефонными звонками. Затем это позволяет нам предсказать, как часто все эти события будут происходить.
Реальная история
Даже когда голы забиваются случайным образом, математика может найти способ сделать прогнозы. Но Гаскойн прав. Суть реальных событий в футболе заключается не в случайности, а в ее преодолении. Футбол – это игра о неудачах и волевых победах. Когда Алекс Фергюсон ушел в отставку в 2013 году, а Дэвид Мойес привел «Манчестер Юнайтед» к своему худшему сезону за последние 20 лет, это не могло быть объяснено невезением. Когда сборная Германии разгромила бразильцев в полуфинале чемпионата мира, забив пять голов за восемнадцать минут, это было не просто случайной последовательностью голов. Бразилия рухнула под давлением, а Германия воспользовалась этим.
Успех Ферги или немецкой сборной нельзя понять с точки зрения случайности: мы должны узнать все ее внутреннее устройство. Ирония заключается в том, что неслучайные события гораздо сложней понять и предсказать, – именно поэтому они намного интересней.
В моей исследовательской работе отсутствие случайности создает самые большие проблемы. Мой коллега-биолог возвращается ко мне через несколько недель и говорит: «Когда вокруг нет хищника, рыбы распределяются наугад; но когда видят хищника, они образуют сплоченную вращающуюся мельницу». Вот теперь это серьезная головоломка. Инициатором перестроения является одна рыба? Как быстро вращается мельница и есть ли у определенных рыб предпочтительные позиции? Почему мельницы – лучшая формация для уклонения от хищника? Вопросы становятся интересней, когда модель случайного выбора терпит неудачу.
Чем дальше я буду углубляться в моделирование в будущих главах, тем менее случайными будут рассматриваемые мной проблемы. Движения игроков высоко синхронизированы, сеть их передач структурирована, мяч движется в соответствии с законами физики, и тренеры рассматривают тактику, следуя определенной стратегии. Модели, которые мы рассмотрим, очень разные, но основной подход всегда будет одним и тем же. Я делаю наблюдения, которые дают мне ряд предположений. Превращаю эти предположения в уравнения и исследую их с помощью компьютерного моделирования и математических решений. Затем сравниваю параметры модели с данными из реального мира.
Задача прикладного математика – выбрать правильную модель для интересующего вопроса. Если нас просто интересует прогнозирование забитых голов за сезон, будет достаточно и случайности. Но если мы хотим понять тактические расстановки, движение и навыки, то необходимо понимать структуру. Лично я недоволен случайными объяснениями – я хочу узнать, что происходит на самом деле. Для этого необходимо стать ближе к игрокам и внимательно следить за тем, что они делают. И это именно то, что мы будем делать дальше.