Ген. Очень личная история — страница 32 из 120

[408]. Часть близнецов душили газом, а их трупы препарировали с целью сравнения размеров внутренних органов. Кого-то убивали инъекцией хлороформа в сердце или оперировали без анестезии. Другим переливали несовместимую кровь или ампутировали конечности. Близнецов заражали тифом, чтобы оценить генетическую вариативность по ответу на бактериальные инфекции. В одном из самых жутких экспериментов Менгеле сшил друг с другом двух близнецов, у одного из которых был горб: так он хотел выяснить, исправит ли общий позвоночник этот дефект. В месте шва развилась гангрена, и оба близнеца вскоре погибли.

Несмотря на иллюзорный налет научности, исследования Менгеле были нижайшего научного уровня. Поставив эксперименты над сотнями жертв, он небрежно заполнил пометками без особых обсуждений единственную тетрадь, и там не было никаких заслуживающих внимания результатов. Один исследователь, изучив разрозненные записи в музее Освенцима, заключил: «Ни один ученый не примет [их] всерьез». Действительно, какими бы успешными ни были ранние близнецовые исследования в Германии, эксперименты Менгеле так сильно дискредитировали эту область и притянули к ней столько ненависти, что мировое сообщество смогло оценить ее лишь через десятилетия.


Второй вклад в развитие генетики нацисты вносили, сами того не ведая. К середине 1930-х, когда Гитлер пришел к власти в Германии, сонмы ученых почувствовали, что нацистская политическая программа становится все более угрожающей, и покинули страну. В начале XX века Германия лидировала по части науки: она была кузницей атомной физики, квантовой механики, ядерной химии, физиологии и биохимии. Из 100 Нобелевских премий по физике, химии и медицине с 1901 по 1932 год 33 присудили немецким ученым (британцы получили 18, а американцы – всего 6). Когда Герман Мёллер в 1932-м приехал в Берлин, город был домом для величайших научных умов. Эйнштейн исписывал уравнениями доски в Институте физики Общества кайзера Вильгельма. Химик Отто Ган расщеплял атомы, чтобы понять, из каких субатомных частиц они состоят. Биохимик Ханс Кребс[409] проникал внутрь клеток, чтобы установить их химические компоненты.

Но подъем нацизма быстро подкосил немецкое научное сообщество. В апреле 1933 года из государственных университетов[410] внезапно уволили профессоров еврейского происхождения. Чувствуя неминуемую опасность, эмигрировали тысячи ученых-евреев. Эйнштейн выехал на конференцию в 1933-м и благоразумно решил не возвращаться. В том же году спешно покинули страну Кребс, биохимик Эрнст Чейн и физиолог Вильгельм Фельдберг. Макс Перуц, австрийский физик, уехал работать в Кембриджский университет в 1937-м. Для некоторых неевреев, таких как физик-теоретик Эрвин Шрёдингер и химик-ядерщик Макс Дельбрюк, ситуация была морально неприемлемой. Из-за отвращения к происходящему многие подали в отставку и переехали в другие страны. Герман Мёллер, разочарованный в очередной фальшивой утопии, оставил Берлин ради Советского Союза, ради новой попытки объединить науку и социализм. (Дабы реакция научного сообщества на укрепление позиций нацизма не выглядела превратно, нужно отметить, что многие немецкие ученые перед его лицом хранили гробовое молчание. Как писал Джордж Оруэлл в 1945 году, «Гитлер, может, и уничтожил долгосрочные перспективы немецкой науки»[411], но тогда «не было недостатка в одаренных [немцах], готовых исследовать такие штуки, как синтетическая нефть, реактивные самолеты, реактивные снаряды и атомная бомба».)

Потеря для Германии обернулась выигрышем для генетики в целом. Благодаря исходу из Германии ученые смогли путешествовать не только между государствами, но и между дисциплинами. В новых условиях у них появилась возможность обратить внимание и на новые проблемы. Физики-атомщики заинтересовались в первую очередь биологией: это был неизведанный рубеж научных исследований. Разложив материю на базовые единицы, они стремились свести к аналогичным материальным частицам и жизнь. Дух атомной физики – вечное стремление к поиску неделимых частиц, универсальных механизмов и системных объяснений – вскоре проник в биологию, подтолкнув ее к новым методам и вопросам. Отголоски этого проникновения будут ощущаться десятилетиями: погружаясь в биологию, физики и химики пытались понять живые существа с точки зрения химии и физики – через молекулы, силы, структуры, воздействия и реакции. Со временем эти эмигранты на новый материк перерисуют его карты.

Больше всего внимания привлекали гены. Из чего они сделаны, как выполняют свои функции? Работы Моргана четко показали, что гены расположены на хромосомах, предположительно, как нанизанные на нить бусины. Эксперименты Гриффита и Мёллера указали на их материальную сущность – вещество, которое может передаваться между организмами и довольно легко меняться под действием рентгеновского излучения.

Биологов, может, и ужаснула бы идея описать «молекулу гена», опираясь лишь на догадки, но какой физик удержится от авантюрной прогулки по неизведанной территории? В 1943 году квантовый физик Эрвин Шрёдингер, выступая в Дублине[412], предпринял дерзкую попытку описать молекулярную природу гена, исходя из чисто теоретических предпосылок (цикл тех лекций позже составил книгу «Что такое жизнь?»). Ген, как постулировал Шрёдингер, должен состоять из особого вещества, и его молекула должна быть полна противоречий. Она должна обладать химической регулярностью – иначе не будут работать рутинные процессы вроде копирования и передачи между клетками. В то же время она обязана допускать и высокую неоднородность – иначе нельзя объяснить столь высокое разнообразие наследственных черт. Молекула должна уметь переносить большие объемы информации и одновременно быть достаточно компактной, чтобы помещаться в клетки.

Шрёдингер представил соединение с многочисленными химическими связями по всей длине «хромосомного волокна». Он предположил, что последовательность связей и служит шифром: «разнообразное содержание, сжатое в миниатюрный шифр»[413]. Может, таинство жизни кроется именно в порядке бусин на нити? Сходство и различие; порядок и разнообразие; сообщение и материя. Шрёдингер старался вообразить вещество, воплощающее в себе расходящиеся, противоречивые свойства наследственности – молекулу, которая удовлетворила бы Аристотеля. Перед его внутренним взором предстало нечто, очень похожее на ДНК.

«Эта глупая молекула»

Не следует недооценивать силу человеческой глупости.[414]

Роберт Хайнлайн[415]

Когда в 1933 году Освальд Эвери услышал о проведенном Фредериком Гриффитом эксперименте по трансформации, ему было 55. А выглядел он еще старше. Щуплый, невысокий, лысеющий, в очках, с птичьим голоском и висящими, словно замерзшие веточки, конечностями, Эвери занимал профессорскую должность в Университете Рокфеллера в Нью-Йорке. Там он всю жизнь изучал бактерий, главным образом пневмококков. Ученый был уверен, что Гриффит в своем эксперименте совершил какую-то ужасную ошибку. Как может какой-то химический мусор переносить генетическую информацию от одной клетки к другой?

Подобно музыкантам, математикам и высококлассным спортсменам, ученые рано достигают пика карьеры и быстро сходят с дистанции. Истощается не изобретательность, а запас жизненных сил: наука – спорт на выносливость. Чтобы провести тот единственный, переломный, озаряющий эксперимент, придется выкинуть в мусорную корзину результаты тысячи проходных экспериментов: это противостояние между природой и выдержкой. Эвери зарекомендовал себя как отличный микробиолог, но он никогда не думал вторгаться в новый мир генов и хромосом. «Фесс»[416], как его ласково называли студенты (сокращая обращение «профессор»), был хорошим ученым, но ничего революционного от него ожидать не приходилось. Эксперимент Гриффита должен был безвозвратно и с ветерком отправить генетическое такси в непредсказуемое, удивительное будущее, но Эвери не спешил заскакивать на подножку набитой будущими триумфаторами машины.


Если Фесс был сопротивляющимся генетиком, то ДНК была сопротивляющейся молекулой – той самой таинственной «молекулой гена». Эксперимент Гриффита породил массу спекуляций на тему молекулярного состава генов. К началу 1940-х биохимики уже научились разбивать клетки, чтобы выявлять их химические компоненты. Им удалось идентифицировать множество молекул в составе живых систем – но молекула, в которой зашифрована наследственность, так и осталась непознанной.

Было известно, что в состав хроматина – биологической структуры, в которой скрывались гены, – входят вещества двух видов: белки и нуклеиновые кислоты. Никто не знал, какова химическая структура хроматина[417], но из двух его «тесно связанных» компонентов белки были знакомы биологам намного лучше, отличались гораздо большим многообразием и казались куда более вероятными кандидатами на роль носителей генов. Ученые знали, что белки выполняют в клетке массу функций. Жизнь клетки поддерживают химические реакции: например, при дыхании сахар взаимодействует с кислородом, в результате чего образуются углекислый газ и энергия. Ни одна из этих реакций не запускается самопроизвольно (иначе наши тела непрерывно источали бы аромат жженого сахара). Белки держат под контролем главные химические процессы в клетке: какие-то ускоряют, какие-то замедляют, обеспечивая ровно тот темп, который совместим с жизнью. Можно сказать, что жизнь – это химия, но только особый ее случай. Живые организмы существуют за счет не просто возможных, а