Пожалуй, последним вкладом нацизма в генетику стало то, что он окончательно опорочил евгенику. Ужасы нацистской евгеники стали уроком, который повлек за собой глобальное переосмысление амбиций, мотивировавших действия нацистов. По всему миру стыдливо сворачивались евгенические программы. Американский исследовательский центр евгеники[433] в 1939 году лишился значительной части финансирования, а после 1945-го радикально сократился. Многие из самых пылких адептов его философии выработали удобную коллективную амнезию, «забыв» о собственной роли в воодушевлении немецких евгеников, и полностью открестились от движения.
«Важные биологические объекты всегда бывают парными»
В науке нельзя добиться успеха, не усвоив, что ученые, вопреки повсеместному убеждению, которое поддерживают их любящие мамочки и газеты, нередко бывают не только узколобыми и скучными, но и просто глупыми.[434]
Молекула тоже обладает стилем – не в меньшей степени, чем ее исследователи.[436]
Наука [была бы] разрушена, если бы, как спорт, ставила соревнование превыше всего.
Эксперимент Освальда Эвери привел и к иной «трансформации». ДНК, аутсайдер в команде биологических молекул, вдруг оказалась в центре внимания. Хотя поначалу многие ученые сопротивлялись идее, что гены состоят из ДНК, от доказательств Эвери было трудно отмахнуться (и все же, несмотря на трехкратное номинирование, Эвери так и не вручили Нобелевскую премию, потому что Эйнар Хаммарстен – влиятельный шведский химик[439] – отказывался верить в способность ДНК переносить генетическую информацию). Когда в 1950-х накопились дополнительные подтверждения из других экспериментов и лабораторий[440], даже самым упертым скептикам пришлось поверить. Отношение к ДНК поменялось: служанка хроматина вдруг оказалась его королевой.
Среди первых обращенных в религию ДНК был Морис Уилкинс, молодой физик из Новой Зеландии[441]. Уилкинс родился в семье сельского доктора, а в 1930-х изучал физику в Кембридже. Новая Зеландия – далекий песчаный край на другой стороне земного шара – к тому времени уже породила силу, которая перевернула физику XX века. Это был Эрнест Резерфорд[442] – еще один молодой человек, который приехал в Кембридж по стипендии в 1895-м и ворвался в атомную физику, словно нейтронный луч. Проводя эксперименты в пылу безумного вдохновения, Резерфорд вывел свойства радиоактивности, построил убедительную концептуальную модель атома, расщепил атом на субатомные частицы и открыл новый рубеж в субатомной физике. В 1919 году Резерфорд стал первым ученым, которому удалось воплотить средневековую фантазию о химической трансмутации: бомбардируя азот альфа-частицами (радиоактивными лучами), он превратил его в кислород. Резерфорд показал, что даже элементы не так уж элементарны. Оказалось, что атом – фундаментальная единица вещества – в действительности состоит из еще более мелких частиц: электронов, протонов и нейтронов.
Уилкинс пошел по стопам Резерфорда, изучая атомную физику и радиацию. Он приехал в Беркли в 1940-х и ненадолго присоединился к команде ученых, занимавшихся разделением и очищением изотопов для Манхэттенского проекта[443]. Но по возвращении в Англию Уилкинс вслед за многими физиками переключился на биологию. Книга Шрёдингера «Что такое жизнь?» его буквально зачаровала. Уилкинс рассуждал так: ген – фундаментальная единица наследственности – тоже должен состоять из субчастиц, и структура ДНК обязана пролить свет на их природу. Для физика это был шанс раскрыть самую соблазнительную тайну биологии. В 1946 году Уилкинса назначили помощником директора только что организованного подразделения биофизики Королевского колледжа в Лондоне.
«Биофизика». Само это странное слово – мешанина двух дисциплин – было вестником нового времени. Обретенное в XIX веке представление о живой клетке как о мешочке с протекающими в нем взаимосвязанными химическими реакциями положило начало новой могучей дисциплине, объединяющей биологию и химию, – биохимию. Как сказал химик Пауль Эрлих, «жизнь <…> – это случайное химическое происшествие»[444]. Верные этому принципу, биохимики стали разрушать клетки и описывать «вещества жизни», разделяя их на классы и изучая функции. Сахара дают энергию. Жиры ее хранят. Белки обеспечивают протекание химических реакций и регулируют темп биохимических процессов, работая «коммутаторами» биологического мира.
Но как белки реализуют физиологические реакции? Например, гемоглобин – переносчик кислорода в крови – осуществляет одну из простейших, но вместе с тем жизненно важных реакций в организме. При высоком уровне кислорода гемоглобин связывается с ним, а попав в среду с низкой концентрацией кислорода, легко с ним расстается. Это свойство позволяет гемоглобину транспортировать кислород из легких в сердце и мозг. Но какая особенность гемоглобина позволяет ему работать таким эффективным молекулярным челноком?
Ответ кроется в структуре молекулы. Ее наиболее изученный вариант, гемоглобин А, имеет форму четырехлистного клевера. Два из этих «листиков» образует белок под названием альфа-глобин, другие два – бета-глобин[445]. Центр каждого листика захватывает железосодержащее вещество под названием «гем», способное связывать кислород – эта реакция отдаленно напоминает контролируемое ржавление. Когда все гемы связываются с кислородом, гемоглобин компактизируется, как бы зажимая своими листиками кислородные молекулы внутри. При высвобождении кислорода белковая хватка слабеет. Отсоединение одной его молекулы координированно расслабляет все листики – почти как в детской головоломке работает вытаскивание главной детальки. Все четыре листика разворачиваются, и гемоглобин расстается со своим грузом. Контролируемое присоединение и отсоединение кислорода – цикл «ржавления» крови и очищения ее от «ржавчины» – позволяет эффективно снабжать ткани этим газом. Благодаря гемоглобину кровь переносит в 70 раз больше кислорода, чем могла бы транспортировать его просто в растворенном виде. От этого зависит и план строения позвоночных: если бы гемоглобин не смог доставлять кислород на дальние расстояния, мы вынужденно довольствовались бы маленькими и холодными телами. Проснувшись однажды утром, мы обнаружили бы, что превратились в насекомых.
Таким образом, гемоглобин выполняет свою функцию благодаря особой форме. Физическая структура молекулы обусловливает химические свойства, химические свойства определяют физиологическую функцию, а та, наконец, биологическую активность. Любую сложную работу живых организмов можно описать на этих уровнях: от физических свойств через химические до физиологических. На вопрос Шрёдингера «Что такое жизнь?» биохимик ответил бы: «Что, как не химические соединения». А биофизик мог бы добавить: «Но что есть химические соединения, как не молекулы вещества».
Это определение физиологии – тончайшее соответствие между формой и функцией вплоть до молекулярного уровня – восходит еще к Аристотелю. Он видел в живых организмах лишь совершенные ассоциации машин. Средневековая биология отошла от этой традиции, выдумав присущие только живым существам «жизненные силы» и мистические жидкости – нечто вроде deus ex machina[446], призванного объяснить загадку функционирования организмов (и подтвердить существование Творца). Но биофизики намеревались вернуть строго механистическое видение живого. Они заявляли, что физиологию до́лжно объяснять языком физики: силы, движения, действия, моторы, машины, рычаги, блоки, зажимы. Законы, устремлявшие ньютоновские яблоки к земле, должны действовать и на рост яблони. Чтобы объяснить жизнь, нет необходимости выдумывать мистические жидкости или призывать особые жизненные силы. Биология – это физика. Бог – в машине.
В Королевском колледже любимым проектом Уилкинса был поиск трехмерной структуры ДНК. Если ДНК действительно носитель генов, то ее структура должна пролить свет на природу генов. Из-за жуткой экономичности эволюция растянула жирафу шею и довела до совершенства четырехрукие объятия гемоглобина, и та же самая экономичность должна была идеально подогнать форму молекулы ДНК под ее функции. Молекула гена обязана выглядеть как молекула гена – что бы это ни значило.
Для расшифровки структуры ДНК Уилкинс решил воспользоваться набором биофизических техник, разработанных неподалеку, в Кембридже, и известных как рентгеновская кристаллография или рентгеноструктурный анализ. Чтобы в общих чертах понять суть метода, представьте, что вы пытаетесь определить форму крошечного трехмерного объекта – скажем, куба. Вы не можете ни увидеть этот куб, ни потрогать его грани – но у этого куба есть одно общее для всех физических объектов свойство: он отбрасывает тень. Представьте, что вы можете светить на куб под разными углами и фиксировать форму возникающих теней. Если световой луч упадет под прямым углом на одну из его граней, куб отбросит квадратную тень. Под косым лучом тень будет ромбической. Направьте источник света по-другому – и тень станет трапециевидной. Этот процесс трудоемок почти до абсурда – как вылепливание лица из миллиона силуэтов, – но зато работает: фрагмент за фрагментом, множество двумерных изображений можно собрать в трехмерную форму.