Разумеется, тут есть нюансы, и генетика определенным образом вмешивается в наше понимание себя как уникальной личности, формируемой окружением, а не последовательностями нуклеотидов. Разберем на примере так называемого «гена Воина», который, согласно некоторым исследованиям, связан с уровнем агрессии, проявляемым человеком. Этот ген (официальная аббревиатура – MAOA) кодирует фермент моноаминооксидазу А, который опосредует химические превращения нейромедиаторов – серотонина, дофамина и норадреналина. Ферменты – это машины, катализирующие химические реакции с разной степенью эффективности, что влияет на скорость протекания катализируемых реакций. При низкой активности фермента моноаминооксидазы А из-за определенных генетических изменений в гене MAOA разрушение нейромедиаторов при передаче нервного импульса замедляется, что вызывает продолжительную стимуляцию некоторых областей головного мозга и, как следствие, усиленный психологический ответ (чаще непропорциональную агрессию). Это достоверно работает на модельных животных (мышах, которые становятся намного более агрессивными по отношению к чужакам), но на человеке статистика местами оказывается сомнительной. Напротив, наиболее статистически значимое влияние на поведение человека в будущем оказывает его окружение, воспитание, события в детском и подростковом периоде. Все же человеческая психика и поведение устроены намного сложнее, чем у какого-либо другого животного, и мы способны меняться и работать над собой.
Гены можно искусственно изменить?
В других главах этой книги мы затрагиваем тему наследственности и на что она может влиять. В общем смысле наследственность можно понимать как совокупность признаков, проявление которых в организме в течение жизни целиком или частично обусловлено генетикой, то есть набором генетических изменений в хромосомах, переданных от родителей. Некоторые из этих генетических изменений могут быть не самыми приятными для жизни, другие – летальными. Человечество на данном этапе развития науки уже умеет адресно изменять какой-либо короткий участок хромосомы, например, заменяя участок с опасной мутацией на нормальную последовательность нуклеотидов без мутации, однако это не применяется на людях. В этой главе мы поговорим о том, как можно поменять участок ДНК и какие риски это несет.
Существует множество разновидностей так называемых эндонуклеаз – белков, способных «разрезать» ДНК в каком-либо месте. Обычно это место узнается через последовательность нуклеотидов. Например, при обнаружении последовательности нуклеотидов …AAGGTTCC… специфичный для нее фермент, словно ножницы, может сделать разрез между G и T, создавая два фрагмента …AAGG и TTCC…
Такие ферменты – эндонуклеазы – были давно известны науке и активно используются в методах молекулярной биологии и генной инженерии, однако они не очень полезны для широкого и прицельного применения в больших геномах из-за короткой длины последовательности «букв ДНК», или сайта рестрикции. Короткий сайт может быть обнаружен огромное количество раз в больших геномах (геном человека достаточно большой – более 3 миллиардов пар нуклеотидов), и разрез может произойти на многих таких сайтах.
Эта проблема решилась открытием CRISPR/Cas-систем, которые можно программировать на узнавание специфичного и, главное, длинного фрагмента ДНК для его разрушения. По сути, CRISPR/Cas-системы – это комплексы нуклеотидной последовательности – «набор букв ДНК» и эндонуклеазы, которые эту последовательность разрезают.
Комплекс ищет нужную нуклеотидную последовательность в геноме с последующей работой эндонуклеазы, чтобы разрезать именно его. Подобную процедуру можно использовать, например, для вырезания фрагмента ДНК, несущего опасную мутацию.
Вырезанный фрагмент затем можно восстановить через отлаженный механизм восстановления ДНК от повреждений – гомологичную рекомбинацию: сделать копию фрагмента второй хромосомы без мутации и вставить его на место удаленной CRISPR/Cas последовательности в хромосому с мутацией. В некоторых ситуациях можно не вставлять ничего на место удаленной последовательности, а просто соединить оставшиеся фрагменты.
Множество открытий, часть из которых применяется и в сельском хозяйстве, и в биотехнологических производствах, было сделано именно с использованием CRISPR/Cas.
Что же мешает использовать эту технологию для людей с генетическими заболеваниями, угрожающими жизни или снижающими качество этой жизни? Дело в том, что философия биологических наук и экспериментов над людьми – биоэтика – жестко регламентирует и стандартизирует все научные процессы, в которые люди включены как испытуемые.
Редактирование генома людей по-прежнему остается табуированной темой из-за наличия риска возможных этических последствий, связанных в основном с евгеникой. В случае насильственного применения методов редактирования генома со стороны государства или других социальных институтов последствия для общества и его развития трудно представить.
Другая проблема кроется непосредственно в ограничении технологии. Чтобы редактировать геном всего человека, это нужно делать на ранних этапах эмбрионального развития, когда количество клеток организма невелико и доставить, например, ту же самую систему CRISPR/Cas в каждую клетку будет легко. В случае же взрослого организма редактировать геном всех клеток технически невозможно, поэтому нужно адресно доставлять системы редактирования именно в те клетки, функцию которых нужно исправить. Например, при наследственных мышечных дистрофиях редактировать геном имеет смысл только в клетках мускулатуры, для чего используются специальные векторы – транспорт для систем редактирования генома. Очень часто это искусственно измененные вирусы-пустышки, внутри которых генетический материал вируса заменен на ДНК, кодирующую систему редактирования генома.
Последняя, но не менее важная проблема, это специфичность систем редактирования генома. Вероятность ошибки, в данном случае – ложного срабатывания системы в другом геноме, – есть всегда. Последствия такого ложного срабатывания могут быть хуже, чем последствия генетического заболевания, которое нужно было вылечить. Наука пытается снизить вероятность этой ошибки до нуля, но пока что риск все еще остается и препятствует широкому внедрению такой технологии в медицину.
Почему близнецы все равно различаются?
Близнецами называют детей, рожденных одновременно одной матерью. При этом одних близнецов практически невозможно различить, а другие кажутся совершенно непохожими друг на друга. Почему так? Дело в том, что существует два вида близнецов – однояйцевые и разнояйцевые.
Разнояйцевые близнецы появляются в результате оплодотворения двух (или более) отдельных яйцеклеток двумя (или более) разными сперматозоидами во время одной и той же беременности. Из-за этого разнояйцевые близнецы могут быть разного пола и иметь разную внешность. При этом разнояйцевые близнецы, конечно, будут иметь общие гены, как и любые братья и сестры от одних и тех же биологических родителей.
Хотя зачатие разнояйцевых близнецов может случаться естественным путем, этот тип близнецов чаще наблюдается у людей, проходящих лечение от бесплодия. Это связано с тем, что препараты для лечения бесплодия могут увеличить количество высвобождаемых яйцеклеток, а при экстракорпоральном оплодотворении (ЭКО) в матку можно ввести несколько эмбрионов.
Однояйцевые, или идентичные, близнецы возникают в результате оплодотворения одной яйцеклетки одним сперматозоидом, при этом оплодотворенная яйцеклетка затем делится на две или более. Однояйцевые близнецы имеют одинаковые геномы и всегда одного пола.
Однако даже такие близнецы могут немного отличаться к моменту рождения. Это происходит потому, что они могут приобретать генетические мутации в процессе развития в утробе матери. Согласно исследованию, пары таких близнецов имеют геномы, различающиеся в среднем на 5,2 мутации, которые происходят на ранних стадиях развития, а 15 % однояйцевых близнецов имеют значительное количество мутаций, специфичных для одного из них.
Предполагают, что некоторые из этих мутаций несущественны, а другие могут привести к наблюдаемым изменениям.
Помимо генетики на мутацию также оказывает влияние окружающая среда, начиная с периода внутриутробного развития. Например, у некоторых однояйцевых близнецов общая плацента. В результате этого кровоснабжение плодов близнецов может стать связанным: хотя каждый плод использует свою часть плаценты, кровеносные сосуды внутри плаценты позволяют крови проходить от одного близнеца к другому. В зависимости от количества, типа и направления соединяющихся кровеносных сосудов кровь может непропорционально передаваться от одного близнеца к другому. Это состояние переливания приводит к тому, что у близнеца-донора уменьшается объем крови, что замедляет его развитие и рост. Объем крови близнеца-реципиента увеличен, что может вызвать перегрузку сердца плода и в конечном итоге привести к сердечной недостаточности. Такое состояние называют фето-фетальным трансфузионным синдромом. На ранних сроках без лечения он часто приводит к смерти одного или всех плодов. В случае выживания плодов эта ситуация может привести к несоответствию размеров младенцев, физическим различиям, которые сохраняются и по мере их взросления.
Хотя большинство близнецов растут в одной и той же обстановке, существуют факторы, которые модулируют различия во внешности, характере и интересах и после рождения. Некоторые близнецы даже могут намеренно стремиться к приобретению отличий.
Глава 2Генетика и здоровье
Какие болезни называются наследственными?
С точки зрения генетики заболевания человека можно разделить на наследственные и многофакторные.