Коржинский работал в Казанском и Томском университетах, с 1893 г. стал директором Ботанического музея Академии наук в Санкт-Петербурге. Много времени он проводил в поездках по России, изучая растительный мир разных регионов. Ученый неоднократно обращал внимание, что среди растений разных видов иногда появляются экземпляры, резко отличающиеся от своих сородичей – размерами, формой листьев или плодов. Причем это явно не было связано ни со скрещиванием, ни с внешними условиями. Он назвал такие изменения «гетерогенными вариациями» и попытался увязать их наличие с дарвиновской теорией.
С точки зрения Коржинского, эволюцию двигают вперед не постепенные изменения, направленные на приспособление растения или организма к условиям внешней среды, а скачкообразные «вариации». Так, считал он, и возникают новые виды – не путем постепенного превращения, как утверждал Дарвин, а при помощи резкого выделения «из себя» новых форм. Такой способ Сергей Иванович назвал гетерогенезисом (от греч. heteros – другой; genes – происхождение, возникновение). Понятие «мутация» он еще не использовал. В 1899 г. исследователь изложил свою теорию в работе «Гетерогенезис и эволюция. К теории происхождения видов». Он не пришел к однозначному выводу относительно того, чем вызываются эти скачкообразные изменения, предположил только, что дело в каком-то воздействии на «яйцевую клетку». Ученый намеревался продолжить исследования, и, возможно, ему удалось бы значительно прояснить явление гетерогенезиса. Но сделать это ему помешала безвременная смерть – Коржинский умер в 1900 г., не дожив до 40 лет. Надо сказать, что в среде коллег его труд вызвал весьма неоднозначную реакцию. Многие прямо писали о том, что Сергей Иванович пытается представить «уродов» творцами эволюции и что далеко не всегда экземпляры, по неизвестной причине получившие какие-то новые признаки, оказываются идеально приспособленными к условиям окружающей среды!
Дискуссия продолжилась, когда свои разработки в вопросе внезапных изменений в 1901–1903 гг. представил Хуго де Фриз.
В числе его «подопытных» были экземпляры энотеры Ламарка (Oenothera lamarckiana), или проще – ослинника. Де Фриз заметил, что среди обычных растений иногда попадались довольно странные – чрезвычайно ветвистые, слишком большие или, наоборот, слишком маленькие, с чрезмерно большим количеством листьев или цветков. Вряд ли дело было в необходимости приспособиться, ведь подобные экземпляры произрастали рядом с обычными. Биолог предположил, что если бы изменение внешнего вида было результатом дарвиновской эволюции, то, во-первых, оно происходило бы постепенно и не столь явно, а во-вторых, затрагивало бы большее количество особей. Значит, причина в чем-то другом. Но самое интересное, что такие видоизмененные экземпляры, как выяснилось, могли передавать свои особенности потомкам! Именно Хуго де Фриз предложил термин «мутация» (от лат. mutatio – изменение). И по сей день мы называем так резкое изменение во внешнем виде организма или в его внутреннем строении, которое может наследоваться потомками «мутанта».
Как исследователи начала XX в. сформулировали «мутационную теорию»? Основные положения были следующими.
• Мутации происходят внезапно.
• Они проявляются весьма разнообразно; мутации могут быть как полезными, так и вредными.
• Появившиеся новые формы достаточно устойчивы.
• Мутации не представляют собой каких-то средних переходных форм, в отличие от наследственных эволюционных изменений. Они проявляются резко и радикально.
Во времена де Фриза механизм возникновения таких изменений не был подробно рассмотрен и изучен. Почему мутация возникает? Почему и, главное, как она передается? Можно ли вызвать мутацию искусственно? В самом начале XX в. на эти вопросы не было ответов… Как вы помните, к тому времени были лишь предположения относительно того, что наследственность (а значит, и мутации, скорее всего, тоже) связана с хроматином и хромосомами в клеточном ядре. Но предполагать мало, надо еще обосновать и доказать!
2.4. Где находятся гены? Хромосомная теория наследственности
Параллельно с исследованиями Хуго де Фриза велись новые разработки в области исследования клеточного ядра и хромосом. Прежде чем рассказывать о том, как была окончательно сформулирована хромосомная теория наследственности, давайте посмотрим, что вообще на тот момент было известно о делении клетки и участии ее частей в этом процессе.
Весь путь развития организма – от оплодотворения до конца жизни – принято называть онтогенезом (от греч. őντος, ontos – сущий и γένεσις, genesis – зарождение). Термин был предложен Эрнстом Геккелем (1834–1919 гг.) еще в 1867 г. Как мы уже говорили, согласно клеточной теории, рост и развитие организмов – животных и растительных – основан на процессе деления клеток. Во второй половине XIX в. изучением этого удивительного явления занимался упоминавшийся нами Вальтер Флемминг. Именно он предложил термин «митоз» для обозначения клеточного деления, в процессе которого одна клетка делится на две с параллельным распределением хромосом поровну между дочерними клетками. Давайте посмотрим, какие основные стадии (фазы) митоза принято выделять.
• Профаза. В ходе этого подготовительного этапа образуется так называемое веретено деления клетки, условно говоря, клетка планирует, как она будет разделяться. Начинается процесс, который ученые называют конденсацией хромосом: они становятся видны под микроскопом. Как еще говорят, хромосомы уплотняются. Так происходит, потому что идут изменения на уровне ДНК (впрочем, во времена Флеминга об участии ДНК в процессе митоза, а тем более в формировании наследственности, еще никто не знал). Мы тоже обратимся к теме ДНК чуть позднее! Иногда говорят еще о препрофазе, но этот процесс «подготовки к подготовке» выделяют не всегда. Дело в том, что у клеток разных организмов и разных растений могут наблюдаться незначительные расхождения в протекании фаз митоза, но для нас они особого значения не имеют.
• Метафаза. Веретено деления полностью сформировалось, «внутренности» клетки начинают разделяться, как будто их притягивает к противоположным полюсам. Самое интересное, что хромосомы тоже подготавливаются к расщеплению. Если на ранней стадии митоза они под микроскопом напоминали пучки травинок или клочки тополиного пуха, то теперь они приобрели более четкую форму и стали похожи на буквы «X». «Пояски» в центре этих условных букв именуются центромерами.
• Анафаза. Хромосомы-буковки разделяются на уровне центромер и направляются к противоположным полюсам материнской клетки. Таким образом, в ней образуется два идентичных набора хромосом.
• Телофаза. Хромосомы становятся почти незаметны, или, как говорят биологи, деконденсируются. Вокруг каждого комплекта хромосом формируется новое клеточное ядро. Материнская клетка окончательно делится (этот процесс именуют еще цитокинезом), и на месте одной клетки образуется две. Каждая из двух дочерних клеток получает полный набор элементов, характерных для первоначальной клетки. Все!
В среднем все стадии митоза проходят за один-два часа. Конечно, мы описали этот сложнейший процесс в упрощенном виде, но для понимания происходящего пока достаточно. Митоз не следует путать с мейозом, который происходит в половых клетках и в процессе которого число хромосом уменьшается в два раза (ведь иначе при оплодотворении число хромосом увеличивалось бы вдвое, а с хромосомами шутки плохи!) Существует также понятие «амитоз» – в ходе этого процесса веретено деления клетки не образуется, она разделяется случайным образом и такое деление характерно в основном для патологических процессов, например, возникновения опухолей.
Итак, к концу XIX в. процесс деления клеток и распределения хромосом при этом уже не представлял особого секрета. Более того, многие ученые заявляли, что именно в хромосомах надо искать разгадку всех тайн наследственности. Но как?
Американский ученый Уолтер Саттон (1877–1916 гг.) в 1902 г. сопоставил «переоткрытые» законы Менделя с тем, что было ему известно о фазах митоза и мейоза. В работах брюннского монаха-исследователя он обратил внимание на строгие математические закономерности проявления разных признаков у дочерних организмов по отношению к родительским. Также Саттон удостоверился, что в ходе мейоза, при формировании половых клеток (их еще именуют гаметами) пары хромосом расщепляются, но их общее количество не увеличивается. Получается, что в составе половой клетки остается только ½ хромосомного набора, и когда сперматозоид сольется с яйцеклеткой, новый организм получит от каждого родителя по половине хромосом. Но ведь это вполне стыкуется с разработками Грегора Менделя! Значит, – делает вывод Саттон, – именно в хромосомах содержатся «факторы», о которых писал Мендель. Правда, ученый не разобрался окончательно, как именно связаны хромосомы и отдельные признаки: одна хромосома отвечает за что-то конкретное (например, за форму листьев у растения или цвет глаз у человека) или здесь работают какие-то иные закономерности? Саттон предполагал, что правило «один признак – одна хромосома» было бы слишком наивно, ведь каждый вид, а тем более каждый отдельный организм, – это сложнейшая совокупность разнообразных признаков. Исследователь считал, что одна хромосома должна содержать несколько так называемых аллеломорфов – это понятие равноценно понятию «ген», но, как мы помним, о генах тогда еще не говорили. В то время еще не выяснили достоверно, каким именно количеством хромосом обладают те или иные организмы и насколько это количество стабильно. До окончательного ответа на этот вопрос оставалось еще несколько десятилетий, например, дискуссии о количестве хромосом у человека продолжались вплоть до 1950-х гг. Но было очевидно, что число их ограничено. Одним из первых идею о постоянном количестве хромосом выдвинул немецкий ученый Теодор Бовери (1862–1915 гг.), и он же параллельно с Уолтером Саттоном заявил об их приоритетной роли в вопросах наследственности.