Генезис и структура квалитативизма Аристотеля — страница 29 из 92

В связи с анализом понятия умопостигаемой материи как материи математических предметов (или просто математической материи) интересно рассмотреть критику Аристотелем платоновского понятия материи. Заметим прежде всего, что выражение «математическая материя» хотя и не встречается у Аристотеля, но вполне могло бы быть им образовано: здесь имеется полная аналогия с выражением «физическая материя», которое мы у него находим и которое служит синонимом чувственной материи, материи физических предметов. Аристотель, критикуя платоновское понимание материи как «большого и малого», говорит, что она «слишком математического свойства», т. е. слишком математична, чтобы быть подлинной материей как началом физического мира, для которого прежде всего характерно движение (Метафизика, 1,9, 992b 2). Математичность этой материи – притом явно чрезмерная – в том, что она не может объяснить движение, не может быть его источником. «Что касается движения, – рассуждает Аристотель, – то ясно, что если бы большое и малое были движением, эйдосы должны были бы двигаться; если же нет, то откуда движение появилось? В таком случае было бы сведено на нет все рассмотрение природы» (там же, 992b 6–8).

В XIV книге «Метафизики» Аристотель возвращается к критике платоновской материи, при этом его упрек в том, что она слишком математическая, получает дополнительное разъяснение. Здесь Аристотель обращает внимание на онтологическую значимость такой материи. Как соотнесение большого и малого эта материя оказывается сущностью в меньшей степени, чем другие категории, следующие в аристотелевском учении о категориях за сущностью. «Из всех категорий, – говорит Аристотель, – соотнесенное меньше всего есть нечто самобытное или сущность» (1088а 24). И далее он продолжает это рассуждение так: «А что соотнесенное есть меньше всего некоторая сущность и нечто истинно сущее, подтверждается тем, что для него нет ни возникновения, ни уничтожения, ни движения в отличие от того, как для количества имеется рост и убыль, для качества – превращение (ἀλοίωσις), для пространства – перемещение, для сущности – просто возникновение и уничтожение» (1088а 31–33). Таким образом, слишком математическая материя Платона, по Аристотелю, явно бесплодна в учении о природе, для которой характерно движение. «Учение же о природе, – подчеркивает Аристотель, – занимается тем, начало движения чего в нем самом» (Метафизика, XI, 7, 1064а 15).

Из этих рассуждений Аристотеля можно сделать и другой вывод, касающийся его отношения к математике. «Слишком математична» означает слишком неонтологична, т. е. слишком далека от ведущей онтологической категории – категории сущности. Математическое, по Аристотелю, касается определенных атрибутов физических сущностей, имеет дело с определенной проекцией подвижных физических тел – с проекций неподвижной, существующей лишь в мышлении, производящем такую абстракцию. Математические предметы – это скорее определения сущностей, их характеристики определенного рода, но не сами сущности. Эта мысль явно содержится в том сопоставлении понятия материи у Платона с досократическими учениями о разреженном и плотном, которое здесь, критикуя Платона, делает Аристотель (Метафизика, I, 9, 992b 5–7).

Итак, мы уже можем констатировать, что основной сдвиг в понимании математики, характеризующий позицию Аристотеля по отношению к позиции Платона, состоит в изменении ее онтологического статуса. Рассмотрим теперь эту проблему подробнее.

Платоновская материя как слишком математическая далека от сущности, от бытия и поэтому не может быть подлинным началом. Математика, таким образом, исключается Аристотелем из начал физического мира. Это означает полное переосмысление онтологического ранга математического знания, предмета математики. Нематематический характер аристотелевской физики ярко проявляется в понимании Аристотелем требования точности и строгости научного знания. Кстати заметим, что строгость и точность в греческом языке не различаются: ἀκριβές – строгость, точность, глагол ἀκριβόω означает точно знать, строго выравнивать, выстраивать вещи [13, т. 1, с. 69]. Отношение Аристотеля к математической точности (ἀκριβολογίαν τὴν μαϑηματικήν) определяется его пониманием природы математических предметов как нематериальных и неподвижных. Естественно, «материя» здесь берется как физическая материя чувственно воспринимаемых вещей. Математической точности нужно требовать не для всех предметов, а лишь для нематериальных. «Вот почему, – заключает Аристотель, – этот способ не подходит для рассуждающего о природе, ибо вся природа, можно сказать, материальна» (Метафизика, II, 3, 995а 15–17). Математическое знание наиболее строго, потому что математика отвлекается от движения: абстракция от чувственно воспринимаемой материи и абстракция от движения – это по существу одна и та же абстракция, превращающая предмет физики в предмет математики.

Строгость математики обусловлена также и ее простотой и логическим превосходством над физикой: математические предметы более первичны по определению (но не по сущности), чем физические предметы. Поэтому если в онтологической иерархии физические предметы стоят впереди математических, то в логической иерархии, в иерархии организованного по формальной высоте знания математика стоит впереди физики. «Чем первее по определению и более просто то, о чем знание, тем в большей мере этому знанию присуща строгость (а строгость эта в простоте); поэтому, когда отвлекаются от величины, знание более строго, чем когда от нее не отвлекаются, а наиболее строго, – когда отвлекаются от движения» (Метафизика, XIII, 3, 1078а 9–12). Формальная высота знания прямо связана с простотой и абстрактностью науки: «Наука, исходящая из меньшего [числа начал], точнее и выше [требующей некоторого] добавления, например, арифметика по сравнению с геометрией» (Вторая аналитика, I, 27, 87а 35). Арифметика абстрактнее геометрии, так как геометрия требует для своего начала положения в пространстве, а арифметическое начало – единица – «сущность без положения [в пространстве]» (там же).

Аналогичным образом Аристотель оценивает ранг науки, исходя из степени абстракции от материи: «Наука, не имеющая дела с “материальной” основой, – подчеркивает он, – точнее и выше науки, имеющей с ней дело, как, например, арифметика по сравнению с гармонией» (там же, 87а 34).

Итак, аристотелевские представления о математических предметах и тем самым о математике вообще можно резюмировать следующим образом, цитируя самого Аристотеля: «Математика есть некоторая умозрительная наука и занимается предметами, хотя и неизменными, однако не существующими отдельно» (Метафизика XI, 7, 1064а 30–33). Дальнейшее прояснение онтологического статуса математических предметов Аристотель начинает с постановки вопроса: «Каким образом они (т. е. математические предметы. – В.В.) существуют» (Метафизика, XIII, 1, 1076а 37).

Проблема способа существования, характера бытия математических предметов задается Аристотелем во всей остроте апории: с одной стороны, как он подчеркивает, математические предметы не существуют в чувственно воспринимаемых телах, но, с другой стороны, они не могут существовать и отдельно от этих тел (там же, 1076b 12). Критику существования этих предметов в самих чувственно воспринимаемых вещах Аристотель дает во второй книге «Метафизики» (998а 6–19). Ведь в этом случае, рассуждает он, пришлось бы допустить, что два тела могут занимать одно и то же место и отказаться от неподвижности математических предметов, раз они находятся в движущихся чувственно воспринимаемых вещах. Эта точка зрения выражает, по Аристотелю, позицию пифагорейцев, которые считают, что числа не существуют отдельно, а существуют в самих вещах как то, из чего вещи состоят (Метафизика, 3, 1090а 20–24). Несколько иначе та же самая проблема задается Аристотелем и в XI книге «Метафизики»: «Какими же предметами должен заниматься математик?» – спрашивает он. «Ведь, конечно, не окружающими нас вещами, ибо ни одна такая вещь не сходна с тем, что исследуют математические науки», но и ни один из математических предметов «не существует отдельно» (1059b 10–14).

Решение этой проблемы Аристотель вырабатывает на конкретном примере отношения между субстанцией и акциденцией, между сущностью (самосущим бытием) и привходящим бытием (бытием по совпадению). Этот пример («бледный человек») анализируется Аристотелем в плане установления определенной онтологической и логической иерархии и их сопоставления. «Не все, – говорит он, – что первее по определению, первее по сущности» (Метафизика, XIII, 2, 1077b 1).

Некоторое определение первее другого по определению или через определение (κατὰ τòν λόγον), если оно более общее: «Для уразумения через определение первее общее, а для чувственного восприятия – единичное» (Метафизика, V, 11, 1018b 32–33). Кроме того, «для уразумения через определение привходящее первее целого, например: “образованное” первее “образованного человека”, ибо определение как целое невозможно без части, хотя “образованного” не может быть, если нет кого-то, кто был бы образован» (там же, 1018b 34–36). Аналогично разбирается пример и с «бледным человеком»: «Бледное» есть часть определения понятия «бледный человек», и поэтому оно первее его по определению, обладает логической первичностью (λογῳ πρότερον). Но «бледное первее бледного человека по определению, но не по сущности: ведь оно не может существовать отдельно, а всегда существует вместе с составным целым» (XIII, 2, 1077b 6–7). Бледность как привходящее свойство (συμβεβηκός) присоединяется к человеку как сущности (οὐσία). Разобрав этот пример, который служит ему моделью для решения поставленной проблемы о соотношении математических предметов с сущностью (бытием), Аристотель заключает, что математические предметы «первее чувственно воспринимаемых вещей не по бытию, а только по определению» (там же, 1077b 13). Математические предметы уподобляются при этом акцидентальному атрибуту, привходящему свойству («бледное»), а чувственно воспринимаемая вещь, природный индивид выступает как сущность, как бытие («человек» в данном примере). Первичность по бытию (οὐσία πρότερον) означает, что вещи могут существовать отдельно, самостоятельно, «опираясь» на самих себя.