троном. Планомерно подошел к силам, которые начинали проявляться в самых тяжелых из известных атомов.
Постигая новейшие области физики, Фейнман не упускал возможности решать классические задачи, изучая явления, которые можно визуализировать. Его заинтересовало рассеяние солнечного света облаками. Рассеяние. Именно это слово начинало занимать центральное место в лексике физиков. Как и многие научные термины, заимствованные из разговорного языка, это слово было обманчиво близко к своему обычному значению.
Частицы, находящиеся в атмосфере, рассеивали лучи света почти так же, как садовник разбрасывал семена, а океан разгонял дрейфующие бревна. До наступления квантовой эры физики могли использовать это слово, не становясь при описании того или иного явления приверженцами волнового или корпускулярного подхода. Свет просто рассеивался, проходя через определенную среду, и при этом полностью или частично изменял свое направление. Рассеяние волн предполагало, что имеет место общая диффузия, рандомизация[71] исходного направления движения света. Небо нам кажется голубым, потому что рассеяние молекулами атмосферы световых волн с длиной волны, которую мы воспринимаем как голубой цвет, сильнее, чем остальных[72]. Кажется, что небо голубое повсюду. Рассеяние частиц можно мысленно представить как столкновения и отскоки бильярдных шаров. Одна частица также может рассеивать другую. В действительности рассеяние лишь некоторых частиц вскоре будет изучено во время выдающегося эксперимента современной физики.
Тот факт, что облака рассеивают солнечный свет, был очевиден. При любых колебаниях капельки воды, присутствующие в атмосфере, должны мерцать за счет того, что свет, достигший их поверхности, отражается и преломляется, а прохождение света от одной капли к другой должно быть сродни диффузии. При хорошо организованной системе образования в области науки возникает иллюзия, что в тех случаях, когда задачу легко поставить и сформулировать математически, ее легко и решить. Фейнману решение задачи рассеяния света облаками помогло развеять иллюзии. Она казалась такой же простой, как любая из сотен задач, приведенных в учебниках. Но, как в детском «почему», она затрагивала множество фундаментальных проблем. Она всего лишь на шаг отступала от вопроса, почему мы вообще видим облака. Молекулы воды идеально рассеивают свет, находясь в парообразном состоянии, но, когда пар переходит в жидкое состояние (конденсируется) и свет проходит через воду, вода становится значительно более прозрачной по сравнению с паром, потому что расстояние между молекулами сокращается и их электрические поля резонируют друг с другом, уменьшая способность к рассеянию. Фейнман попытался также понять, как меняется направление рассеянного света, и обнаружил нечто, во что сначала сам не мог поверить. Свет, прошедший сквозь облака, столкнувшийся со множеством частиц, фактически сохранял некоторую память о своем исходном направлении. Однажды туманным днем в Бостоне Ричард смотрел на здание, стоящее вдалеке, на другом берегу, и увидел его контур, исчезающий, но все же довольно четкий, менее контрастный, чем само здание, и несфокусированный. И тогда он подумал: все-таки математика работает.
Фейнман, конечно, еврей
В своих научных исследованиях Фейнман достиг границ, за которыми начиналось непознанное. Его расчеты в области рассеяния света сразу же нашли применение в решении проблемы, которая давно беспокоила одного из его профессоров — Мануэля Вальярту. Проблема была актуальна и касалась космических лучей. Не только ученых, но и общественность беспокоили эти лучи высокой энергии неизвестного происхождения, пронизывающие пространство и оставлявшие следы из электрически заряженных частиц. Именно ионизация помогла их обнаружить. Еще незадолго до начала века ученые выяснили, что сама по себе атмосфера не должна проводить электричество. Теперь же ученые стали устанавливать приборы и оборудование для обнаружения лучей на кораблях, самолетах и воздушных шарах и пытаться зафиксировать их по всему миру, но более всего в окрестностях Пасадены в Калифорнии, где Роберт Милликен и Карл Андерсон основали Калифорнийский технологический институт, ставший центром изучения космических лучей. Позже выяснилось, что сам термин был обобщающим и распространялся на множество частиц, имевших разные источники. В 1930-х годах исследования сводились к попыткам понять, что во Вселенной может быть источником этого излучения, что определяет время излучения, а также направление излучения по отношению к Земле. Вальярта озадачивало то обстоятельство, что эти лучи могут рассеиваться магнитными полями галактических звезд, подобно тому, как облака рассеивают солнечный свет. Независимо от того, происходили ли космические лучи изнутри или вне галактики, должен ли эффект рассеяния смещать их видимое направление к Млечному Пути или от него? Расчеты Фейнмана давали отрицательный ответ на этот вопрос. Суммарный эффект от рассеяния был равен нулю. Если космические лучи, как казалось, и приходили со всех сторон, то это происходило не потому, что влияние звезд скрывало их исходное направление. Фейнман и Вальярта совместно подготовили статью для Physical Review. Это была первая научная публикация Фейнмана. Конечно, саму идею нельзя было назвать принципиально новой, но из ее обоснования вытекала провокационная и смелая мысль: вероятность того, что частица вылетает из скопления рассеивающего вещества в определенном направлении, должна быть равна вероятности того, что античастица будет двигаться в обратном направлении. С точки зрения античастиц время шло вспять.
Вальярта раскрыл Фейнману секрет публикации работ, написанных в соавторстве учителя и ученика: имя ученого, имевшего более высокий статус, стояло первым. Несколько лет спустя Фейнман отыгрался. Гейзенберг завершил свою книгу о космических лучах словами «эффект подобного рода, с точки зрения Вальярты и Фейнмана, нельзя было прогнозировать». Когда они снова встретились, Ричард торжествующе спросил, видел ли Вальярта книгу Гейзенберга. Тот понимал, чем была вызвана радость. «Да, да, — ответил Вальярта. — Вы — последнее слово в изучении космических лучей».
Фейнман жаждал новых задач — любых задач. Встречая людей в здании факультета физики, он всегда спрашивал, над чем они работают. И им скоро становилось понятно, что это не праздное формальное любопытство. Фейнмана интересовали детали. Однажды он поймал однокурсника Монарха Катлера. Тот был в отчаянии. Для своей дипломной работы Катлер выбрал тему, в основе которой лежало важное открытие, сделанное в 1938 году двумя профессорами в оптической лаборатории.
Они обнаружили, что изменяется характер преломления и отражения света линзами, на поверхности которых солевые испарения сформировали тончайшие пленки толщиной всего в несколько атомных слоев. Такие покрытия позволяли устранить нежелательные блики с линз камер и телескопов. Катлер должен был найти способ расчета, позволяющий определить, какой эффект окажет наложение различных тонких пленок друг на друга. Также его преподавателей интересовала возможность создания оптически абсолютно чистых цветных фильтров, которые пропускали бы световые волны лишь определенной длины. Катлер был в замешательстве.
Для решения этой задачи достаточно знать классическую оптику, и углубляться в квантовые эффекты не требовалось. Однако никто раньше не анализировал поведение света, проходящего через ряд прозрачных пленок толщиной менее длины волны падающего излучения. Катлер сказал Фейнману, что не нашел никакой литературы по вопросу и просто не знает, с чего начать. Через несколько дней Ричард пришел к Катлеру с решением — формулой, которая позволяла рассчитать суммарный эффект, возникающий в результате бесконечного ряда отражений от внутренних поверхностей покрытий. Он показал, как сочетания преломлений и отражений повлияют на фазу света, изменяя его цвет. Используя теорию Фейнмана и проведя много часов за калькулятором Маршана[73], Катлер также нашел способ, позволяющий изготовить цветные фильтры, о которых говорил его профессор[74].
Развитие теории отражения света многослойными пленками для Фейнмана не слишком сильно отличалось от решения задач, с которыми он сталкивался в таком теперь уже далеком прошлом, когда входил в состав математической команды и участвовал в школьных математических олимпиадах в Фар-Рокуэй. Он мог увидеть или почувствовать, как потоки световых лучей, отражающиеся туда-обратно двумя поверхностями, а потом двумя следующими поверхностями и так далее до бесконечности, пересекаются между собой, и у него в голове был грандиозный запас формул, которые он мог применить в поиске решений. Даже когда ему было четырнадцать, Ричард манипулировал рядами дробей, словно пианист, тренирующийся в нотной азбуке. Теперь он интуитивно понимал, как соотнести формулы и физические явления, улавливая ритм пространства или сил, которые обозначали эти символы. Когда он учился на выпускном курсе, факультет математики пригласил Ричарда стать одним из трех членов команды и принять участие в самом престижном и сложном государственном математическом конкурсе — олимпиаде им. Уильяма Лоуэлла Патнема, проводившейся тогда во второй раз. (Пятеро лучших студентов получали звание членов научного общества Патнема, а победителю присуждалась стипендия на обучение в Гарварде.) Задание включало сложные вычислительные упражнения и алгебраические действия, и никто не ожидал, что участники смогут выполнить его целиком за отведенное время. В отдельные годы средний показатель был равен нулю: больше половины участников не справлялись с задачами. Товарищ Фейнмана по студенческому братству был удивлен, когда Ричард вернулся довольно рано, ведь олимпиада все еще продолжалась. Позднее Фейнман узнал, насколько поражена была комиссия разрывом между его результатами и четырьмя ближайшими. Из Гарварда известили о стипендии, но Фейнман ответил, что уже выбрал другой университет — Принстон.