Гений. Жизнь и наука Ричарда Фейнмана — страница 22 из 132

Сначала он хотел остаться в МТИ. Он полагал, что никакой другой вуз Америки не может соперничать с ним, и сообщил об этом декану своего факультета. Слейтеру приходилось такое слышать и раньше от верных студентов, мир которых ограничивался только Бостоном и МТИ, или Бронксом и МТИ, или Флэтбушем и институтом. Он категорично заявил Фейнману, что его не возьмут в аспирантуру для его же блага.

Слейтер и Морс обратились напрямую к своим коллегам из Принстона в январе 1939 года, сообщив, что Фейнман был совершенно особенным. Один из них сказал, что его оценки были «почти невероятны», другой — что он был «лучшим студентом на физическом факультете, по крайней мере за последние пять лет». В Принстоне, когда рассматривался вопрос о допуске Фейнмана к экзаменам, фраза «неограненный алмаз» звучала чаще других.

В комиссии понимали необходимость принимать соискателей, одаренных в одной из областей, но никогда раньше не встречали кого-то со столь низким баллом по истории и английскому. По истории Фейнман был в пятерке худших, по литературе — в шестерке худших, а тест по изобразительному искусству лучше него написали 93 % учащихся. Но зато таких невероятных оценок по физике и математике комиссии раньше видеть не доводилось. По правде говоря, оценки по физике были безупречны.

Но при зачислении в Принстон возникла другая проблема, и декан Смит довольно четко обозначил ее Морсу. «Один вопрос всегда встает в отношении тех, кто интересуется теоретической физикой, — писал Смит. — Фейнман еврей? Мы ничего не имеем против евреев, но вынуждены поддерживать количество учащихся-евреев на факультете на разумно низком уровне в связи со сложностью их трудоустройства».

К марту из Принстона не было вестей, и Слейтер решил снова написать Смиту коллегиально: «Дорогой Гарри <…> определенно это лучший студент, какой у нас был за последние годы <…> лучший и в плане учебы, и в плане личных качеств…» Рекомендательное письмо было официальным и убедительным, но от руки Слейтер сделал приписку, которой не было в копии: «Фейнман, конечно, еврей…» Он хотел убедить Смита, что смягчающих обстоятельств было достаточно: «…но в сравнении с Каннером и Эйзенбадом он на порядок более привлекателен как личность. Мы не пытаемся избавиться от него. Наоборот, нам бы не хотелось терять такого студента, и втайне мы надеемся, что вы не примете его. Но, кажется, он сам решил пойти в Принстон. И я гарантирую: он вам понравится».

Морс также написал, что Фейнман «ни внешне, ни манерами не походит на еврея, и хочется верить, что это не доставит никому никаких неудобств».

На пороге Второй мировой войны формально установленный вузовский антисемитизм оставался проблемой в американской науке. И гораздо большей проблемой он был для выпускников университетов, чем колледжей. В университетах любой студент магистратуры, в отличие от студентов бакалавриата, мог быть зачислен на кафедру. Ему полагалась зарплата преподавателя и возможность проведения исследовательской работы, а также перспективы повышения. К тому же факультеты считали себя ответственными за отрасли промышленности, которым они поставляли кадры, а большинство компаний, занимающихся исследованиями в области прикладных наук, были в основном закрыты для евреев. «Нам отлично известно, что следует перескакивать через фамилии, оканчивающиеся на “берг” или “штейн”», — заявил в 1946 году декан химического факультета Гарвардского университета Альберт Кулидж. Квоты на прием были введены в 1920–1930-х годах, когда поток детей эмигрантов, желавших получить высшее образование, возрос. Еврейский вопрос редко обсуждался открыто. Их стремление и напористость были пропитаны запахами съемного жилья. Это было неприлично. «Они гордились своими научными успехами… Мы же презирали усилия этих маленьких евреев», — писал один из гарвардских протестантов в 1920 году. Даже сам Томас Вульф, с пренебрежением относившийся к амбициям «еврейского мальчика», тем не менее понимал привлекательность научной карьеры: «Потому что, брат мой, он сгорает во тьме. Он видит классы, аудитории, сияющие аппараты в огромных лабораториях, открытый простор для обучения и исследований, знания и описание мира, озаренные светом имени Эйнштейна». Также было очевидно, что для дальнейшей преподавательской работы профессору необходимо было обладать определенными качествами, а евреи зачастую были застенчивыми, мягкими или, напротив, одаренными, нетерпеливыми и нечувствительными к другим. В узких, однородных кругах университетского общества кодовыми словами были располагающий или воспитанный. Даже несмотря на то что Оппенгеймер долгие годы был деканом Калифорнийского университета в Беркли, Раймонд Бирдж[75] высказался по его адресу: «Нью-йоркские евреи стадом повалили сюда вслед за ним, и некоторые из них были далеко не так хорошо воспитаны».

Фейнман, нью-йоркский еврей, явно не интересовавшийся ни религией, ни общественным мнением, никогда не высказывался о проявлениях антисемитизма. В Принстон его приняли, и с этого момента у него не было повода беспокоиться о своем трудоустройстве. Однако во время учебы в МТИ год за годом он не мог получить работу в летний период в телефонной лаборатории Белла, даже несмотря на рекомендации будущего Нобелевского лауреата Уильяма Шокли[76], работавшего там. До войны в компанию Белла не принимали ученых еврейского происхождения. В конце концов и Бирджу представилась возможность взять Фейнмана на работу в Беркли. Разочарованный Оппенгеймер настойчиво рекомендовал его, но Бирдж отложил решение этого вопроса на два года. Однако через два года было уже слишком поздно. В первом случае антисемитизм сыграл большую роль, во втором — незначительную. Если бы Фейнман заподозрил, что его религиозная принадлежность повлияла на его карьеру, он был бы весьма огорчен.

Внутримолекулярные силы

Тринадцать студентов-физиков МТИ выполняли в 1939 году свои дипломные работы. Накопленных знаний все еще было весьма мало, и трудно было ожидать, что работы выпускников будут нетривиальны и достойны публикации. Эти проекты, анализирующие спектры однократно ионизированного гадолиния или гидратированных кристаллов хлорида марганца, должны были стать стартом их научной карьеры и заполнить пробелы в стене мировых знаний. (Идентификация характерной комбинации длин волн, излучаемых подобными веществами, требовала терпения и точности проведения экспериментов, а новые вещества создавались настолько часто, что ученые в области спектроскопии только успевали их анализировать.) Выпускники могли разрабатывать новые лабораторные методы исследования или изучать кристаллы, в которых при сжатии образуется электрический ток. Дипломная работа Фейнмана начиналась с изучения локальной проблемы, а закончилась фундаментальным открытием сил, действующих внутри молекул любых веществ. Даже несмотря на то что она никак не была связана с его будущей, более значимой работой, она тем не менее стала незаменимым инструментом в физике твердых тел. Сам же Фейнман в дальнейшем просто упускал ее из виду как нечто очевидное, что можно описать буквально в двух словах.

Ричард не знал, что, когда он еще учился на младших курсах, профессор Морс, преподававший курс квантовой механики, рекомендовал факультету выпустить его на год раньше. Предложение было отклонено, а Слейтер стал научным руководителем дипломной работы Фейнмана. Он предложил ему тему, которая на первый взгляд выглядела не сложнее остальных. Вопрос словно был из справочника по химии и физике: почему кварц так незначительно расширяется под воздействием тепла? Почему его коэффициент расширения так мал по сравнению с коэффициентами расширения металлов, например?

Любое вещество расширяется — увеличивает свой объем — под воздействием высоких температур, так как его молекулы переходят в возбужденное состояние. Но в твердых телах расширение зависит от того, как в нем расположены молекулы, и может быть разным по величине в разных направлениях. Молекулярное строение кристаллов можно представить в виде стандартной объемной геометрической решетки. Обычно ученые наглядно представляли кристаллическую структуру в виде геометрической модели, в которой шары, изображающие атомы, скреплены проволочными стержнями, но в действительности строение вещества не настолько простое. Атомы могут быть в большей или меньшей степени закреплены в решетке, но могут также вращаться или сдвигаться. Электроны в металлах хаотично перемещаются вблизи атомов. Цвет, текстура, твердость, хрупкость, электропроводимость, мягкость и вкус вещества — все зависит от особенностей расположения атомов. Эти особенности, в свою очередь, зависят от сил, действующих внутри вещества, как классических, так и квантово-механических. И в тот период, когда Фейнман приступил к выполнению своей дипломной работы, природа этих сил еще не была достаточно понятна, даже в кварце, самом распространенном минерале на земле.

В старых конструкциях парового двигателя использовался механический регулятор — пара железных шаров, отклоняющихся от вращающегося стержня. Чем быстрее он крутился, тем дальше отклонялись шары и тем тяжелее было вращаться стержню. Фейнман представил, что нечто аналогичное наблюдается в кристаллической решетке кварца (молекула кварца, или диоксида кремния, состоит из двух атомов кислорода, соединенных с атомом кремния — SiO2). Но атомы кремния не вращаются, они вибрируют. По мере нагревания кварца, как полагал Ричард, атомы кислорода могли обеспечить появление сил, направленных таким образом, чтобы компенсировать расширение. Но как можно было рассчитать силы, действующие внутри каждой молекулы, силы, величина которых изменялась в зависимости от направления? Казалось, что простого способа не существует.

Ричард никогда раньше так глубоко не задумывался о структуре молекул. Он выучил все что возможно о кристаллах, их стандартной классификации, геометрии и симметрии, расстоянии между атомами. И все это сводилось к т