Гений. Жизнь и наука Ричарда Фейнмана — страница 33 из 132

Тем временем Фейнман и Уилер готовились сделать решающий шаг в развитии своих теоретических разработок. До этого времени, несмотря на свою современность и акаузальность (внепричинность), это была все еще классическая, а не квантовая теория, где объекты рассматривались как физические тела, а не как абстрактные вероятности. Энергия изменялась непрерывно, в то время как из квантово-механических представлений вытекало, что волновые пакеты совершают бесконечно малые дискретные скачки при четко определенных условиях. Проблема собственно энергии так же остро стояла в классической электродинамике, как и в квантовой теории. Появление в уравнениях нежелательных бесконечностей сопутствовало квантованию: бесконечности возникали, стоило только предположить существование точечного электрона. Это было так же очевидно, как деление на ноль. Фейнман чувствовал, что разумно начинать с рассмотрения классического варианта, а потом уже применять к нему подход квантовой электродинамики. Стандартные способы перевода классических моделей в современные квантовые аналоги уже существовали. Один из них предполагал заменить все классические выражения для импульса более сложными квантово-механическими аналогами. Проблема в том, что в теории Уилера и Фейнмана не было импульсов. Фейнман устранил их, когда выстраивал упрощенную модель, в основу которой был заложен принцип наименьшего действия.

Время от времени Уилер говорил Фейнману, чтобы тот перестал утруждать себя обдумыванием этой задачи, что он уже ее решил. Позже, весной 1941 года, он зашел так далеко, что даже запланировал презентацию квантовой теории на коллоквиуме физиков в Принстоне. Паули, подозрительный и сомневающийся, выспрашивал Фейнмана по пути в библиотеку Палмера, о чем собирался рассказать Уилер. Ричард ответил, что не знает.

«О, — протянул Паули, — профессор не говорит своему ассистенту, как он решил задачу? Может быть, профессор и не нашел никакого решения».

Паули оказался прав. Уилер отменил выступление. Однако он не растерял энтузиазма и запланировал не одну публикацию, а целую серию из пяти статей. Фейнман тем временем работал над своей докторской. Он решил подойти к квантованию теории так же, как подходил к решению сложных задач, когда учился в МТИ, разбирая все случаи на простейшие задачи. Он попытался рассчитать взаимодействие пары объединенных гармонических осцилляторов с задержкой во времени как пары идеальных пружин. Одна из пружин начинает колебаться, посылая простую синусоидальную волну. Другая должна отразить ее, и в результате такого взаимодействия образовывалась бы новая волна. Фейнман достиг определенного прогресса, разрабатывая это направление, но не смог понять, как применить в этом случае квантовую версию. Он рассматривал слишком упрощенный вариант.

В традиционной квантовой механике для перехода от настоящего к будущему необходимо решить дифференциальные уравнения, руководствуясь принципом Гамильтона. В таких случаях физики говорили: требуется «найти Гамильтониан[94]» системы. Если определить его удавалось, можно было двигаться дальше, в противном случае они оставались ни с чем. По мнению Уилера и Фейнмана, в случае непосредственного воздействия на расстоянии исходить из принципа Гамильтона было нельзя. И связано это было с задержками во времени. Недостаточно дать полное описание настоящего: расположение, импульсы и другие параметры. Не предугадать, в какой момент отсроченный эффект из прошлого (или, в случае Уилера и Фейнмана, из будущего) изменит существующую картину. Поскольку прошлое и будущее взаимосвязаны, привычные дифференциальные уравнения не работали. Применение альтернативного метода Лагранжа становилось уже не роскошью, а необходимостью.

Прокручивая в голове подобные мысли, Фейнман отправился на пивную вечеринку в одну из таверн на Нассау-стрит. Он сидел за одним столиком с незадолго до этого приехавшим из Европы физиком Гербертом Джелом, учившимся в Берлине у Шрёдингера. Джел был квакером, прошел через два концлагеря в Германии и во Франции. Американское научное общество гостеприимно принимало таких беженцев, и потрясения, которые переживала Европа, ощущались теперь довольно близко. Джел спросил Ричарда, над чем тот работал. Фейнман объяснил и в свою очередь поинтересовался, известно ли Герберту что-либо о применении принципа наименьшего действия в квантовой механике.

Конечно, Джел знал об этом. Он рассказал, что Дирак, которым Фейнман так восхищался, опубликовал об этом статью лет восемь назад. На следующий день Джел и Фейнман нашли ее в библиотеке в подшивках Physikalische Zeitschrift der Sowjetunion. Статья была довольно короткой и называлась «Функция Лагранжа в квантовой механике». Дирак разработал начальный этап использования метода наименьшего действия именно в том стиле, который искал Фейнман, способ определения вероятности полного пути частицы во времени. Дирак рассматривал только один частный случай — перенос волновой функции во времени на бесконечно малую величину (на мгновение).

Бесконечно малые промежутки времени были слишком малы, но стали отправной точкой для вычислений. Это ограничение не волновало Фейнмана. Во время просмотра статьи он снова и снова сталкивался со словом аналог. «Очень простой квантовый аналог, — писал Дирак. — У них есть классические аналоги… Теперь очевидно, каким должен быть квантовый аналог всего этого». «Что это за слово в научной статье?» — думал Фейнман. Если два выражения аналогичны, значит ли это, что они равны?

«Нет, — сказал Джел. — Дирак, конечно, не имел в виду, что они равны». Отыскав доску, Фейнман принялся работать с формулами. Джел оказался прав: они не были равны. Поэтому он попробовал ввести в формулы константу. Джел не успевал следить за ним, с такой скоростью Ричард выполнял расчеты: заменял свободные члены уравнений, перепрыгивал с одного уравнения на другое и вдруг вывел нечто до боли знакомое — уравнение Шрёдингера[95]. Оказалось, что существует связь между фейнмановской формулировкой, использовавшей подход Лагранжа, и стандартной волновой функцией квантовой механики. Неожиданно, но под аналогом Дирак подразумевал пропорциональность.

Теперь уже Джел достал свой маленький блокнот и стал поспешно переписывать все с доски. Он сказал Фейнману, что вряд ли Дирак имел в виду именно это. С такой точки зрения идея Дирака выглядела исключительно метафорической. Англичанин и не предполагал пользу метода. Джел заметил Ричарду, что тот сделал важное открытие. Его поражал невозмутимый прагматизм фейнмановского подхода к математике, так не похожий на отстраненный, эстетский взгляд Дирака. «Вы, американцы, — заключил он, — всему всегда пытаетесь найти практическое применение».

Аура необыкновенного человека

В тот период способности Ричарда Фейнмана раскрывались быстрыми темпами и приближались к своему пику. В двадцать три года он еще оставался застенчивым, и всего лишь несколько лет отделяло его от того времени, когда он смог словно ястреб с высоты увидеть физику во всей ее широте. Но уже тогда на земле не было другого физика, способного так же виртуозно распоряжаться теоретическими научными знаниями. Он не просто использовал математику, хотя всем в Принстоне было очевидно, что математическая составляющая теории Уилера — Фейнмана лежала далеко за пределами знаний Уилера. Фейнман, казалось, как и Эйнштейн в его возрасте или советский физик Лев Ландау и еще совсем немногие, с непринужденной легкостью схватывал суть того, что стояло за уравнениями. Он был скульптором, который даже во сне ощущал глину, оживающую в его руках. Студенты и преподаватели, спускаясь в холл выпить послеполуденный чай, думали о встрече с Фейнманом. Они с нетерпением ждали, когда он начнет по-доброму подтрунивать над Тьюки и другими математиками, полусерьезно жонглируя физическими теориями. Пересказывая их, он всегда задавал вопросы, которые, казалось, пробивались к самой сути. Экспериментатор Роберт Уилсон, прибывший в Принстон из Беркли, где работал в знаменитой лаборатории Эрнеста Лоуренса, всего несколько раз пересекался с Фейнманом, но тем не менее нисколько не сомневался в том, что тот — великий человек.

Вокруг Фейнмана уже сформировалась своеобразная аура необыкновенного человека, но таким его знали лишь в ближайшем окружении. Ричард тогда только заканчивал второй год обучения в аспирантуре. Он по-прежнему не проявлял никакого интереса к основной литературе и отказывался читать даже работы Дирака и Бора. Теперь он это делал преднамеренно. Готовясь к устному квалификационному экзамену, сдавать который предстояло всем аспирантам, Фейнман решил не заучивать основные принципы физики. Вместо этого он вернулся в Массачусетский институт, где мог побыть один. Достал новый блокнот и написал на первой странице: «Записи фактов, которых я не знаю». В первый, но не в последний раз он пересматривал и систематизировал свои знания. Несколько недель он старался разобраться в каждом разделе физики, рассматривая их по отдельности и снова собирая вместе, замечая острые углы и нестыковки и стараясь в каждой теме найти ее суть. Когда Фейнман закончил подготовку, у него на руках была записная книжка, которой он особенно гордился. Но, как оказалось, от этих записей было мало пользы при подготовке к экзамену. Его спросили, какой цвет находится в верхней части радуги. Он чуть было не дал неверный ответ, обратив в уме зависимость показателя преломления от длины волны. Специалист в области математической физики Говард Робертсон задал умный вопрос по теории относительности о том, как будет выглядеть траектория Земли, если смотреть на нее в телескоп с удаленной звезды. Как позднее понял Фейнман, он неправильно истолковал вопрос, но тогда убедил-таки преподавателя в своей правоте. Уилер зачитал предложение из учебника по оптике о том, что свет от сотни атомов, не согласованный по фазе, будет в пятьдесят раз интенсивнее света от одного атома, и попросил обосновать это утверждение. Фейнман заподозрил подвох. Он ответил, что в учебнике, должно быть, ошибка, так как, следуя той же логике, два атома будут излучать свет такой же мощности, как и один атом. Однако все это были формальности. В Принстоне понимали, что представлял собой Фейнман. Когда о