В теории Дирака наметились проблемные места: в ней, как и во всей его физике, возникали нежелательные бесконечности. Простейшее описание вакуума — пустое пространство в условиях абсолютного нуля — предполагало наличие бесконечной энергии и бесконечного заряда. А с практической точки зрения человека, пытающегося вывести уравнение, бесконечность частиц была чревата неприятными последствиями. В поисках выхода из этой ситуации Фейнман в очередной раз обратился к своей работе с Уилером в Принстоне и восприятию времени как потока, текущего в обоих направлениях. Он снова предложил пространственно-временное решение, в котором позитрон был электроном с противоположным знаком времени. Геометрия этого решения была проста, но весьма необычна, и Фейнману стоило большого труда подобрать метафору для ее описания:
«Представьте, что в куб с коллодием поместили черную нить, после чего коллодий отвердевает, — писал он. — Нить тянется сверху вниз произвольным образом. Затем куб нарезают по горизонтали на тонкие квадратные секции; из этих срезов, как из последовательно сменяющих друг друга кадров, составляют фильм». На каждом таком срезе будет присутствовать точка, и она будет перемещаться, шаг за шагом повторяя траекторию нити. А теперь представьте, объяснял Фейнман, что нить в кубе изогнулась в форме буквы N. Стороннему наблюдателю, который видит только срезы, но не нить целиком, эта картина напомнит образование пары «частица/античастица»:
«На последовательных срезах сначала будет видна лишь одна точка, но потом появятся еще две — срезанные участки изогнувшейся нити. Все три точки будут какое-то время двигаться вместе, затем две из них сойдутся и «обнулятся», и на последних кадрах вы опять увидите одну точку».
С помощью обычных уравнений, которые позволяют вычислить движение электрона, можно рассчитать и эту модель, хотя понадобится пройти «более сложный путь в пространстве и времени, чем тот, к которому мы привыкли». Сравнение с нитью не нравилось Фейнману; он искал метафоры, которые точнее бы выразили его точку зрения, запечатлели бы саму суть различия между траекторией нити «в срезе», то есть в конкретный момент времени, и явлением в целом. Но потом студент Корнелла, в войну служивший пилотом бомбардировщика, предложил сравнение, которое Фейнман позже использовал в своей работе и которое стало знаменитым.
Итак, пилот следит за дорогой через прицел низко летящего бомбардировщика и вдруг видит не одну, а три дороги. Он испытывает смятение, которое вскоре проходит, так как два новых «разветвления» сходятся и исчезают; пилот понимает, что мгновением раньше пролетел место, где дорога поворачивает в обратном направлении, изгибаясь в форме буквы N. Тот участок, где дорога идет назад, соответствует позитрону — он возникает одновременно с первым электроном, движется и аннигилирует с другим электроном.
Так Фейнман описал картину в целом. Метод интегралов по траекториям хорошо подходил для этой модели: еще по своей работе с Уилером он знал, что сумма фаз ближайших траекторий применима и к «обратному времени». Он также нашел способ разрешить осложнения, возникшие из-за принципа запрета Паули — фундаментального закона квантовой механики, согласно которому два электрона не могут одновременно находиться в одном и том же квантовом состоянии. Фейнман весьма оригинально обошел этот принцип — постановил, что, хотя в ранних вычислениях участвовали две частицы, на самом деле это была одна частица, двигающаяся по зигзагообразной траектории во временном срезе. «Обычная теория скажет, что это невозможно, потому что в отрезок времени между ty и tx два электрона не могут находиться в одном и том же состоянии, — записал он в тетради. — Но мы заявляем, что это один и тот же электрон, и таким образом принцип Паули перестает действовать». Объяснение, словно взятое из научно-фантастического романа о путешествиях во времени, — едва ли физики были готовы его принять. Фейнман отдавал себе отчет в том, что предлагает радикально отступить от общепринятого понимания времени. Он нарушал повседневную интуитивную логику, гласящую, что будущего еще не существует, а прошлое уже прошло. В свое оправдание он мог сказать лишь одно: физическое время перестало соответствовать времени «психологическому» — законы микромира не делали различий между прошлым и будущим, а Эйнштейн уничтожил понятие абсолютного времени, не зависящего от наблюдателя. Вместе с тем Эйнштейн и помыслить не мог, что частицы способны развернуться и поплыть против течения времени. Фейнману осталось лишь подчеркивать необходимость такого переосмысления. «Для физики может оказаться полезным рассмотрение событий во всех временных пластах одновременно и понимание того, что в каждый отдельный момент времени мы осознаём лишь то, что уже случилось», — писал он.
Грохот моих шестеренок
Весной 1948 года Швингеру и Фейнману предстояла очередная конференция — продолжение элитной встречи на Шелтер-Айленде. Мероприятие запланировали на конец марта; для него был арендован курортный отель в горах Поконо в Пенсильвании. Все было как в прошлый раз: идиллическая обстановка, небольшой список участников и серьезная повестка. Снова должны были приехать Ферми, Бете, Раби, Теллер, Уилер и фон Нейман; председателем назначили Оппенгеймера. Кроме того, в этот раз ждали двух гигантов довоенной физики: Дирака и Бора.
Они собрались 30 марта в холле отеля, под старой зеленой башней с часами. Из окон открывался вид на поле для гольфа и километры лесистых гор. Конференция началась с доклада, посвященного последним новостям о треках частиц в космических лучах и ускорителе в Беркли. Ученые обещали, что к осени синхротрон, снабженный пятиметровым магнитом, разгонит протоны до значений энергий в 350 миллионов электронвольт. Этого будет достаточно для выделения огромного числа новых элементарных (так казалось ученым) частиц — мезонов, содержащихся в космических лучах и в данный момент представляющих самый большой интерес для исследователей. Чем ждать, пока образцы частиц поступят в облачные камеры из космоса, экспериментаторы лучше создадут их самостоятельно.
Анализируя данные, полученные в результате изучения космических лучей, ученые столкнулись с проблемой: оказалось, что между ожидаемой и реальной силами взаимодействия мезонов с другими частицами имелось огромное расхождение. На предыдущей конференции молодой физик Роберт Маршак высказал мнение, которое в 1947 году требовало от ученого гораздо больше мужества и смекалки, чем спустя двадцать — тридцать лет: он предположил, что существуют две разновидности частиц и что эти группы взаимодействуют друг с другом. Не один мезон, а два! — стоило только высказать это предположение, и оно стало очевидным. Фейнман торжествующе заявил, что новую частицу следует назвать маршаком. Благодаря развитию технологий реестр новых частиц насчитывал уже почти двузначное число. На открытии конференции в Поконо экспериментаторы разогревали публику демонстрацией слайдов с наиболее характерными изображениями — впечатляющими треками частиц, похожими на следы разбежавшихся кур. На этих снимках не было полей, матриц, операторов, зато геометрия рассеяния частиц была представлена достаточно отчетливо.
На следующее утро пост докладчика занял Швингер. Он презентовал «полную» теорию квантовой электродинамики, которая, как он подчеркнул в самом начале, соответствовала двойному критерию «релятивистской инвариантности» и «калибровочной инвариантности». Выполненные в соответствии с ней вычисления выглядели одинаково вне зависимости от скорости и фазы частиц. Инвариантность гарантировала, что теория останется неизменной, какой бы ни была случайная позиция наблюдателя: так на длительность отрезка времени от рассвета до заката не влияет то, перевели вы часы на час вперед, чтобы продлить световой день, или нет. Теория обеспечивала независимость расчетов от определенной системы координат — «калибра». По словам Швингера, он рассматривал квантованное электромагнитное поле, в котором «каждая малейшая единица пространства считается частицей» — частицей с большей математической силой и меньшей визуальной ощутимостью, чем в физике вчерашнего дня. Далее он представил новые сложные вычисления и начал демонстрировать применение своей теории на конкретном примере, показывая взаимодействие электрона с его собственным полем. Его почтенные слушатели, скорее всего, ничего не поняли, но, в отличие от привычной Швингеру аудитории, их было не так легко запугать, поэтому его воодушевленную речь не раз прерывали. Сам Бор задал ему вопрос — Швингеру это не понравилось, и он резко его оборвал, а затем продолжил свою речь, пообещав, что все станет ясно в свое время. Как всегда, он не пользовался записями и подчеркивал это; почти вся его лекция была посвящена формулировкам, он выводил одно уравнение за другим. Это был настоящий математический марафон, затянувшийся почти до вечера. Бете отметил, что критики притихли, когда Швингер перешел к математическим формулам; вопросы возникали лишь тогда, когда тот начинал объяснять чисто физические понятия. Он поделился этим наблюдением с Фейнманом и посоветовал ему избрать аналогичный, математический подход к своему докладу. Глядя на своих знаменитых коллег, Ферми с некоторым удовлетворением отметил, что те начали терять нить. Лишь он и Бете до самого конца внимательно слушали Швингера.
Затем настала очередь Фейнмана. Он нервничал. Ему показалось, что лекция Швингера, по всем признакам блистательная, была принята не очень хорошо (но он ошибался: Швингер произвел неизгладимое впечатление на всех, и, главное, на Оппенгеймера). По совету Бете он полностью изменил ход доклада. Изначально Фейнман планировал излагать свои идеи с точки зрения физики; математические формулы у него тоже имелись, хоть и не столь изящные, как у Швингера, но, как и у Швингера, они во многом были понятны лишь самому автору. Он мог объяснить свои методы с помощью формулировок, но не мог обосновать сами математические вычисления. Он пришел к имеющимся результатам путем проб и ошибок и знал, что его формула точна, так как проверил ее на множестве зад