Гений. Жизнь и наука Ричарда Фейнмана — страница 92 из 132

С проблемой устаревших программ столкнулись не только в Калтехе и не только в рамках базового курса физики. Современная наука менялась слишком стремительно, а вот вузовская программа, напротив, костенела. Не осталось никого, кто мог бы вывести студентов бакалавриата на горячую передовую современной физики и биологии. Но если квантовую механику и молекулярную генетику еще как-то можно было интегрировать в программу высшего образования, то наука «до Эйнштейна» грозила превратиться в предмет исторический. Для многих первокурсников освоение физики начиналось с истории: они изучали физическую науку Древней Греции; египетские пирамиды и шумерские календари; развитие физики в Средние века и в XIX веке. Почти все курсы начинались с механики в том или ином виде. Вот как выглядела типичная программа:

1. Историческое развитие физической науки.

2. Современное состояние физической науки.

3. Кинематика: наука о движении.

4. Законы динамики.

5. Применение законов движения: движущая сила и энергия.

6. Упругость и простое гармоническое движение.

7. Динамика абсолютно твердого тела.

8. Статика абсолютно твердого тела.

И так далее, и тому подобное, пока наконец в самые последние недели курса не начиналось изучение атомов и молекул, которое шло в этом списке под номером 26. После этого оставалось совсем немного времени, чтобы слегка затронуть ядерную физику и астрофизику. В Калтехе по-прежнему был в ходу древний учебник, написанный местным светилом Робертом Милликеном — труд, по уши увязший в физике XVIII–XIX веков.

Фейнман же начал свой курс с атомов. Потому что именно они были основой его понимания мира — не мира квантовой механики, а обычного мира парящих облаков и масляной пленки на воде, переливающейся разными цветами. Осенью 1961 года почти двести первокурсников вошли в аудиторию, и первое, что они услышали, был вопрос, заданный улыбающимся лектором, меряющим шагами кафедру:

— Так как же мы представляем мир? Предположим, что в результате некоего катаклизма будут уничтожены все научные знания и нужно передать следующему поколению лишь одну фразу, в которой содержалось бы максимум информации и минимум слов. Что это была бы за фраза? Мне кажется, в ней должна содержаться атомная гипотеза (или, если угодно, не гипотеза, а факт): всё в мире состоит из атомов, мельчайших частиц, находящихся в постоянном движении и притягивающих друг друга на небольшом расстоянии, но отталкивающихся при столкновении. В одном этом высказывании заключен огромный объем информации о мире, если немного поразмыслить и включить воображение.

Он предложил студентам представить каплю воды и совершить путешествие по шкале размеров: увеличить каплю до двенадцати метров в сечении, потом до двадцати четырех километров, а потом еще в двести пятьдесят раз, пока на горизонте не забрезжат движущиеся молекулы, каждая из которых состоит из двух атомов водорода, похожих на пухлые ручки, торчащие из большого «туловища» — атома кислорода. Фейнман охарактеризовал противоборствующие силы, удерживающие и отталкивающие молекулы. Представил жар в виде движущихся атомов; рассказал о давлении, расширении, превращении в пар. Описал лед и его молекулы — твердую кристаллическую решетку; поверхность воды, поглощающую кислород и азот и выделяющую пар. Вслед за этим тут же возникли вопросы о равновесии и дисбалансе. Вместо того чтобы говорить об Аристотеле и Галилее, объяснять устройство рычага и физику метаемого тела, он создал осязаемую картину мира, в котором все субстанции состоят из атомов, рассказал, как возникают эти субстанции и почему они ведут себя так, а не иначе. Растворение и осадки, огонь и запах — Фейнман шагал по кафедре, показывая атомную гипотезу не как конечный пункт, редуктивный тупик, а как начало пути, ведущего к более сложным материям.

— Если вода — а она вся состоит из этих маленьких капель, все километры воды на Земле — может образовывать волны и пениться, шуметь и течь по асфальту, описывая странную траекторию; если все это, все потоки воды состоят из атомов, представляете, сколько всего еще возможно? И возможно ли, что этот «объект», который ходит сейчас перед вами и о чем-то рассказывает, тоже представляет собой нагромождение атомов, только организованных более сложным образом? Говоря о себе как о скоплении атомов, мы, конечно же имеем в виду не беспорядочную кучу, а определенное сочетание частиц, имеющее уникальный рисунок, который не повторяется от одного человека к другому, хотя этот другой, вероятно, обладает теми же способностями, как и тот, кого вы видите в зеркале.

Фейнман вдруг обнаружил, что загружен работой; он не работал так много со времен Манхэттенского проекта. Его занимало не только преподавание. Он понял, что хочет структурировать огромный объем физических знаний, и структурировать его по-новому, перевернув с ног на голову, пока не найдет взаимосвязи — «хвосты», которые раньше никто не увязывал между собой. Он даже попытался нарисовать карту, представляя свои исследования в виде диаграммы, и назвал ее «Путеводитель по непонятному».

Команда профессоров и аспирантов из Калтеха с грехом пополам старалась за ним угнаться: неделями они сочиняли задачи и собирали дополнительные материалы, и его «Путеводитель» постепенно обретал очертания. После лекций они встречались за обедом и пытались собрать воедино то, что Фейнман извлекал из одного-единственного листка с загадочными набросками. Он говорил о физике языком простого мечтателя и уделял основное внимание идеям, а не методологии, однако мысль его развивалась столь стремительно, что коллегам-физикам было сложно поспевать за ее ходом.

Любой базовый курс включал историю предмета, и курс Фейнмана не был исключением. Но вместо того чтобы углубляться в повествование о шумерах и древних греках, Фейнман посвятил вторую лекцию «физике до 1920 года». На эту тему у него ушло меньше получаса, после чего он перешел к краткому обзору квантовой физики, ядер и странных частиц по Гелл-Манну и Нисидзиме. Многие студенты пришли в Калтех именно за этим. Но Фейнман не хотел, чтобы у них создалось впечатление, будто именно здесь, на уровне микроскопических частиц, кроются фундаментальные законы и глубочайшие нераскрытые тайны.

Перейдя искусственную границу между научными дисциплинами, он заговорил о другой проблеме — и это было «не обнаружение новых элементарных частиц, а кое-что, оставшееся нерешенным с давних пор». Речь шла об анализе турбулентных жидкостей. В наблюдениях за эволюцией звезды наступает момент, когда можно определить начало конвекции; после этого поведение звезды становится непредсказуемым. Мы также не можем анализировать погоду. Нам неизвестна закономерность процессов, происходящих внутри Земли. Никто не может объяснить этот хаос с точки зрения первых принципов атомных сил или законов течения жидкости. Течение обычной жидкости разобрано в учебнике, сказал он первокурсникам. Но мы до сих пор не знаем, как описать поток воды, текущей по трубе. Вот главная проблема, которую еще предстоит решить.

Каждая его лекция представляла собой совершенное театральное представление. В отличие от других преподавателей, Фейнман никогда не обрывал тему на середине: «Похоже, нам пора заканчивать. Продолжим эту дискуссию в следующий раз…» Он так четко просчитывал, сколько времени понадобится на заполнение диаграммами и уравнениями двухъярусной раздвижной доски, что, казалось, заранее представлял, как она будет выглядеть в конце занятия. Он выбирал обширнейшие темы, широко раскинувшие свои щупальца и затрагивающие самые разные сферы научного знания: сохранение энергии, время и расстояние, вероятность. Уже в конце первого месяца он перешел к глубокой и насущной проблеме симметрии в законах физики. Его подход к сохранению энергии позволял взглянуть на многие проблемы совсем под другим углом. Физики-теоретики, занимающиеся исследованиями, постоянно помнили об этом принципе, но в учебниках он упоминался вскользь, в конце главы о механической энергии или термодинамике. При этом сперва указывалось, что механическая энергия не сохраняется, так как трение неизбежно приводит к ее потере. Полноценное описание принципа встречалось лишь тогда, когда речь заходила об эквивалентности материи и энергии у Эйнштейна.

А Фейнман выбрал сохранение энергии отправной точкой разговора о законах сохранения вообще (и в результате в программе его курса понятия «сохранение заряда», «барионы» и «лептоны» вводились за несколько недель до изучения тем, посвященных скорости, расстоянию и ускорению). Он предложил гениальную аналогию. Представьте ребенка, у которого есть двадцать восемь кубиков, сказал он. В конце каждого дня мать их пересчитывает. И выявляет фундаментальный закон — закон сохранения кубиков: их всегда двадцать восемь.

Однажды она обнаруживает, что кубиков двадцать семь, но при внимательном осмотре выясняется, что один завалился под ковер. На другой день она насчитывает лишь двадцать шесть кубиков, но, подойдя к открытому окну, видит, что недостающие два валяются на улице. На третий день оказывается, что кубиков двадцать пять. В комнате стоит коробка; взвесив коробку и кубик, мать приходит к выводу, что три кубика находятся внутри. Так продолжается долгое время. Кубики исчезают в ванной под водой, и матери приходится применять все более сложные вычисления, чтобы определить их количество по уровню поднявшейся воды. «Ее мир постепенно усложняется, — объяснял Фейнман, — ей приходится вводить целый ряд понятий, которые помогают подсчитать, сколько кубиков находится там, где их не видно». Между энергией и кубиками есть одно различие, предупредил он: энергия — это набор абстрактных формул, которые с каждым шагом становятся все запутаннее. Но суть одна: в конечном итоге физик всегда должен вернуться к тому, с чего начал.

Живые аналогии и обширные темы неизбежно влекли за собой расчеты. На той же часовой лекции по сохранению энергии Фейнман заставил студентов высчитывать потенциальную и кинетическую энергию в гравитационном поле. Через неделю, знакомя их с принципом неопределенности в квантовой механике, он не только сумел передать всю драматичность этого неотъемлемого свойства всех природных явлений, но и рассчитал плотность вероятности атома водорода в состоянии покоя. При этом он по-прежнему не касался таких базовых понятий, как скорость, расстояние и ускорение.